

So sánh các phương pháp phân tích ổn định nền đường đắp hiện nay ở Việt Nam

Comparison of embankment stability analysis methods in Viet Nam

Trương Hồng Minh

Khoa Xây dựng, Trường Đại học Duy Tân, Việt Nam

Facualty of Contruction, Duy Tan University, Vietnam

Tóm tắt

Hiện nay khi phân tích ổn định của nền đường có thể sử dụng một trong hai phương pháp tính toán khác nhau: phương pháp thứ nhất dựa theo cơ học đất cổ điển là giả định trước mặt trượt (thường là cung tròn hình trụ) rồi đi tìm mặt trượt cho hệ số ổn định nhỏ nhất; phương pháp thứ hai dựa trên việc ứng dụng phương pháp phần tử hữu hạn trong địa kỹ thuật, để phân tích trạng thái ứng suất - biến dạng của môi trường đất, từ đó tìm được hệ số ổn định. Bài báo tập trung nghiên cứu so sánh việc tính toán theo hai phương pháp đã nêu và đề xuất một số kiến nghị áp dụng cho từng trường hợp.

Từ khóa: Ổn định nền đường, phân tích ổn định mái dốc, hình dạng mặt trượt, phương pháp phần tử hữu hạn trong địa kỹ thuật, Phần mềm Geo slope, Phần mềm Plaxis

Abstract

Recently, in the analaysic of stability of embankment, we can use one of two different calculation methods: the first method based on classical soil mechanics, that is assumed slip surface (usually cylindrical arcs) then determine the slip surface for smallest stability coefficient; the second method is based on the application of finite element method in geotechnical engineering, to analyze the stress - strain state of the soil environment, which found stability coefficient. This paper focuses on comparison of two calculation methods outlined and proposed a number of recommendations applicable to each case.

Keywords: Embankment stability, slope stability analysic, slip surface shape, the finite element method in geotechnical engineering, Geo slope software, Plaxis software.

© 2014 Bản quyền thuộc Đại học Duy Tân

1. Giới thiệu

Khi xây dựng nền đường, đặc biệt là những đoạn đường đi qua khu vực có đia chất phức tạp thì việc tính toán ổn định nền đường là bài toán vô cùng quan trọng. Tính chính xác của kết quả tính toán ảnh hưởng rất lớn đến độ bền, độ ổn định lâu dài của nền đường sau này.

Hiện nay, khi phân tích ổn định của nền đường các kỹ sư thường dùng một trong hai phương pháp: Phương pháp thứ nhất là giả định trước mặt trượt và chỉ xét trạng thái cân bằng giới hạn của những điểm nằm trên cung trượt (thường

Email: minhth533@yahoo.com (Trương Hồng Minh)

gọi là phương pháp giả định mặt trượt). Phương pháp thứ hai xem nền đất là môi trường đàn hồi - dẻo và ứng dụng phương pháp phần tử hữu hạn để phân tích ứng suất - biến dạng của các điểm trong nền đất.

Từ thực tế đó làm nảy sinh những câu hỏi như: nên lựa chọn phương pháp nào để phân tích? Kết quả phân tích bằng hai phương pháp trên có khác nhau không?...vv

Để có cơ sở khoa học cho các câu hỏi như trên, tác giả bài báo đã tiến hành nghiên cứu, xác định hệ số ổn định của nền đường trong nhiều trường hợp khác nhau theo hai phương pháp đã nêu. Trong quá trình phân tích có ứng dụng chương trình GEO - SLOPE cho phương pháp thứ nhất (công thức Bishop đơn giản) và chương trình PLAXIS cho phương pháp thứ hai. Sau đây xin trình bày một số kết quả ban đầu về vấn đề này.

- Phân tích ổn định nền đường theo các phương pháp bằng các chương trình máy tính
- 2.1. Trình tự giải bài toán ổn định nền đường bằng chương trình GEO SLOPE

Phần mềm GEOSTUDIO2004 V6.2, môđun SLOPE/W (Hình 1) được sử dụng để phân tích ổn định của mái taluy nền đường đắp.

Hình 1. Giao diện của GEOSTUDIO V6.2

Trình tự các bước thực hiện như sau:

Bước 1: Khởi động chương trình

• Programs\GEO – SLOPE\ GEOSTUDIO 2004.

• Chọn Create a SLOPE/W analysic (hình 1).

Bước 2: Thiết lập các thông số ban đầu

- Thiết lập vùng làm việc.
- Thiết lập tỉ lệ.
- Thiết lập hệ lưới vẽ.
- Định dạng các trục và kích thước các trục.

Bước 3: Vẽ phác thảo bài toán (Hình 2)

- Sử dụng lệnh Lines trên menu "Sketch".
- Di chuyển con trỏ để bắt dính vào các điểm ô lưới vẽ

Hình 2. Phác thảo bài toán

Bước 4: Khai báo các thông số về địa chất

- Chọn Material Properties từ menu "KeyIn". Hộp "KeyIn Soil Properties" sẽ xuất hiện
- Khai báo các thông số về đất vào hộp thoại KeyIn Material Properties (Hình 3).

Keyin	Material Properties		? 🛛
Mat	Strength Model	Description	Color
1	Mohr-Coulomb	Dat dap	
2	Mohr-Louiomb	Dat nen tu nhien	
1	Mohr-Coulomb	Pat dap	Set
Basic Ur 19 Co 25	2 Parameters it Weight Phi 1.5 20 shesion 5		
.∎&	dvanced Parameters		
	it wit above WT Phi B	Arisotropic Fr.	
	opy Insert	<u>D</u> elete	<u>O</u> K Cancel

Hình 3. Hộp thoại KeyIn Material Properties

Bước 5: Gán các lớp đất cho bài toán

- Chọn Regions ở menu lệnh Draw.
- Lần lượt chọn các điểm để khép kín chu vi từng lớp đất rồi chọn lớp đất tương ứng. Kết quả sẽ được như Hình 4.

Hình 4. Kết quả sau khi gán các lớp đất

Bước 6: Khai báo mực nước ngầm

- Chọn "Pore Water Pressure" ở menu "Draw" để mở hộp thoại "Draw Piezometric".
- Chọn các lớp đất mà mực nước ngầm đi qua.
- Sử dụng công cụ "Draw" để vẽ đường đo áp. Kết quả như Hình 5.

Hình 5. Kết quả thể hiện mực nước ngầm

 Sử dụng lệnh "Slip Surface \ Grid" ở menu "Draw". Con trỏ sẽ chuyển từ mũi tên sang dạng chữ thập.

- Nhập khoảng cách lưới tâm trượt vào hộp thoại "Draw Slip Surface Grid". Kết quả như Hình 6.
- Sử dụng lệnh "Slip Surface \ Radius" ở menu "Draw" để giới hạn bán kính cung trượt.
- Số gia bán kính cung trượt được khai báo vào " # of Radius Increments"
- Các bước thực hiện và kết quả như Hình 6.

Hình 6. Kết quả của bước 7

Bước 8: Lựa chọn phương pháp phân tích

- Chọn "Analysis Setting" ở menu lệnh "KeyIn", hộp thoại hiện ra như Hình 7.
- Chọn OK.

Hình 7. Lựa chọn phương pháp phân tích

Bước 9: Kiểm tra bài toán

- Chọn "Verify" ở menu "Tools".
- Chọn "Verify" để kiểm tra, nếu có lỗi chương trình sẽ thông báo (Hình 8).

🚡 Verify Data		? 🛛
Information:		
Verifying Data Compacting geometry Compacting if od a social numbers Checking if odd a exceeds size limitations Checking for site surface data Checking pressure lines Checking tor integration files Verification completed - 0 error(s) found.		
	Verify	Done

Hình 8. Kết quả kiểm tra

Bước 10: Chạy chương trình và xem kết quả

- Chọn "SOLVE" ở menu "Tools".
- Chọn "CONTOUR" ở menu "Window" để hiển thị tâm trượt, hệ số ổn định và mặt trượt (Hình 9). Lưu ý chọn phương pháp tính theo Bishop.

-	~		101		ro	۰.	20	007			Υ.	-			-	-	<i>n</i>		-	P																																
÷	F		đ	8 6	9	6	6	P	2	2						1	٩	1	B,		¢	3	2	ŝ			12	n			v		Ě	8	1				3	1		\$										
		P	1	2		1	č			Ľ		h	i i	Ð		4	1	Ċ)	₹	5		P		Å	۲	A	I	Ę	Ę	2	R			Ŀ	9	10	80	80	<u>nq</u>	ľ											
0				1	~	0	H	F	жe		.36	•		2																																						
								7																					-																					-		2
											- 12																ł	١.																								
																						÷	÷																													
																	1		÷	ł	÷	÷	÷					ł																								
												÷					ŝ		÷			÷	÷					ŝ																								
												ł					l		ŝ	i	ŧ	÷	ŧ		ł			ŝ																								
												÷					ł					÷	÷		1			ŝ																								
												÷					l	ŧ	f	ř	1	÷	÷					ŝ																								
			1							4	1	9										÷					1	ŝ																								
			1			١						ŝ,																																								
						1							N	ć																																						
						D	2	þ.	a i						ì	ŝ.																																				
							1										N	~																																		
								N												¥	ŝ																															
						۰,			2													ъ	Ś.	3																				ú.								
			-1				•				5						1		T	t	t	T	t	r	T			2	-															T								
						۰.	ć.					2	ч											L	ł	1																										
							•								7	1		1	-	1	1		•																													5
						'n	4	s.		n.,	'n	÷.,													Z																											
						~	7				- 1	7																																								

Hình 9. Kết quả phân tích ổn định nền đường

* Trường hợp có hoạt tải ở phía trên thì qui đổi hoạt tải thành lớp đất tương đương như Hình 10 (lớp đất số 3).

Hình 10. Khai báo hoạt tải bằng lớp đất tương đương

2.2. Trình tự giải bài toán ổn định nền đường bằng chương trình PLAXIS

Phần mềm PLAXIS V8.2 được sử dụng để phân tích ổn định của mái taluy nền đường đắp. *Trình tự các bước thực hiện như sau:*

Bước 1: Khởi động chương trình

• Programs\Plaxis 8.x\ Plaxis Input.

Bước 2: Thiết lập các dữ kiện cho bài toán

 Trong hộp thoại "General setting" khai báo các thông tin về bài toán: thẻ "Project", thẻ "Dimensions" như Hình 11a,b

General settings	×	General settings
Project Dimensions Project General Hensme dioklame> Directory Tole dioklame> Comments Gravity angle : -90 ° 1.0 G Seconderation: 0.000 ± G graceleration: 0.000 ± G Earth gravity: 9.800 ± m/s ²		Project: Dimensions Units Length ↓ Porce ↓M ↓ Time ↓ ↓ Stress ↓W/m ² Weights ↓W/m ³ Set as glefauk

Hình 11. Thiết lập các dữ kiện ban đầu của bài toán a) Thẻ "Project" b) Thẻ "Dimensions"

Bước 3: Xây dựng mô hình hình học

• Chọn "Geometry line" từ menu "Geometry".

Hình 12. Mô hình hình học sau khi tạo

Bước 4: Khai báo và gán số liệu địa chất

- Chon "Soil&Interface..." từ menu "Materials".
- Từ hộp thoại "Materials", chọn New khai báo lớp đất mới
- Hộp thoại "Mohr Coulomb" để khai báo các thông số về lớp đất (xem Hình 13a,b).
- Gán các lớp đất vào mô hình hình học. Kết quả như Hình 14

Mohr-Coulomb - Lop 1	Mohr-Coulomb - Lop 1
General Parameters Interfaces Material Set Identification: Log I Material model: Mohr-Coulomb Material type: Drained	General Parameters Interfaces Stiffness
Comments Permeability k _x : 0.000 m/day k _y : 0.000 m/day k _y : 0.000 m/day	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Next Qk Cancel Help	Advanced

Hình 13. Khai báo các thông số về đất a) Thẻ "General" b) Thẻ "Parameter

- Gán biên cho bài toán bằng công cụ
- Mô hình tạo xong như Hình 12

Hình 14. Kết quả sau khi gán các lớp đất

Bước 5: Phát sinh lưới phần tử

- Chọn "Gobal coarseness..." từ menu "Mesh".
- Chọn biểu tượng để tiến hành chia lưới phần tử và để xác nhận. Kết quả như hình 15.

Bước 6: Xác định các điều kiện tính toán ban đầu

- Chon "Intial condition" từ menu "Intial".
- Chọn biểu tượng từ thành công cụ, vẽ đường mực nước (hình 15a).
- Chọn biểu tượng dể tính toán áp lực nước ban đầu và Chọn biểu tượng update (Judate) để xác nhận (Hình 15b).

Prie New Generatory Franciskis Bellevis Hole The Time Generatory Franciskis Benerator Hole The Time Generator Hole Th	🎬 Plaxis 8.	2 Outp	at - [View	pore pres	sures]						
	🎬 File Edit	View I	Seometry		Stresses	s Window Help					_ 8 ×
	Input Cole	Currer	⊳ B	8	৹ ্	· 🖸 🎝 🗖 🛛] [Principal directions	•	+ Update	
			-80.00 	-60.00	40- -40	1.00 -20.00 Luuu Luuu Luu	0.00	20.00	40.00	60.00	80.00
	-20.001						Active pore p	ressures			
R							(pressure = n	egative)			
Role: 669 x 3 Junit : 7.000 x 15.000 m Guewell selection : Mane					(30.400	1, 11.400)					

Hình 15. Thiết lập điều kiện mực nước ngầm a) Đường mực nước ngầm b) Áp lực nước lỗ rỗng

Chọn biểu tượng dể tính toán ứng suất ban đầu và chọn biểu tượng update (dể xác nhận (Hình 16).

Hình 16. Kết quả tính ứng suất ban đầu

Bước 7: Tiến hành tính toán

- Chọn biểu tượng từ thanh công cụ.
- Chọn điểm phân tích ứng suất biến dạng.
- Thiết lập các giai đoạn phân tích (Hình 17).

S S S	e 🖬	A	- Calculate			
General Paramete Phase Number / ID.: Start from phas Log info	rs Multipliers F 2 CEIN e: 1 - <phase 1=""></phase>	review		kulation type http://creduction		
				Paramete	ars	
					ars	Delete
Identification	Phase no.	Start from	Calculation		rrs Time	Delete
Identification Initial phase	Phase no.	Start from	Calculation	Paramete Paramete Loading input N/A	ars Insert	Delete Water
Identification Initial phase → <phase 1=""></phase>	Phase no. 0	Start from 0	Calculation N/A Plastic	Earameter Parameter Next NA Staged construction	Time 10.00	Delete Water 0 0
Identification Initial phase 	Phase no. 0 1 2	Start from 0 0 1	Calculation N/A Plastic Phi/c reduction	Parameter Next Loading input N/A Staged construction Incremental multipliers	Time 10.00 0.00 0.00	Water 0 0

Hình 17. Thiết lập các giai đoạn phân tích

Chọn biểu tượng Calculate để bắt đầu tính toán. Quá trình tính toán và kết quả như Hình 18a, b.

🚟 Plaxis 8.2 Ca	lculations - E(1).plx					3 🛱	Plaxis 8.2 Calcul	ations - E(1).	plx					
File Edit View C	alculate Help					File	Edit View Calcul	late Help						
Input Output Cure	. • • • • •	+> Calculate				1	ри Омри Curves	۵ 🔒	a	+ Output				
General Parame	pre Multiclare Draviau Diavis 8-2, Diastic Calculation -	F(1) - Plane Strain				ŝ	eneral Parameters	<u>M</u> ultipliers Pro	sview					1
Number / ID.:	Total multipliers at the end of previous	loading step	Calculation progress				Number / ID.:	2 <phas< td=""><td>e 2></td><td></td><td>Phi/c reduction</td><td></td><td></td><td></td></phas<>	e 2>		Phi/c reduction			
Start from ph	Σ-Mdsp: 1.000 PM Σ-MloadA: 1.000 Σ-Ν	ax 0.000 Aarea: 1.000					Start from phase:	1 - <phase 1=""></phase>		•	Advanced			
Log info	Σ-Mixeight: 1.000 Fore Σ-Mixeight: 1.000 Fore Σ-Mixeight: 0.000 Stiff	te-X: 0.000 te-Y: 0.000					Loginfo				Comments			
	Σ-Msf: 1.250 Time Σ-Mstage: 0.000 Dyn	e: 0.000 1. time: 0.000	UI Node A				U.							
	Iteration process of current step	chenci 130 F	lement 900								Baramete	15		
	Reration: 11 Max Global error: 0.010 Tole	. iterations: 60 D erance: 0.010 C	recomposition: 100 % Talc. time: 36 s	nsert _	🙀 Delete						Next	🜉 Insert 🔤	🔆 Delete	
Identification	Plastic points in current step			Time	Water Fir	I	dentification	Phase no.	Start from	Calculation	Loading input	Time	Water	Fir
Initial phase	Plastic stress points: 2504	Inaccurate 18	8 Tolerated: 253	0.00	0 0		Initial phase	0	0	N/A	N/A	0.00	0	0
Phase 1>	Plastic interface points: 0	Inaccurate	0 Tolerated: 3	0.00	0 1	1	<phase 1=""></phase>	1	0	Plastic	Staged construction	0.00	0	1
Phase 2>	Tension points: 135	Cap/Hard points:	0 Apex points: 0	0.00	0	11	<phase 2=""></phase>	2	1	Phi/c reduction	Incremental multipliers	0.00	0	9
			Gancel											
					>	3	10							>
						2								-

Hình 18. Quá trình và kết quả tính toán a) Quá trình tính toán b) Thông báo kết quả

Bước 8: Xuất kết quả tính toán

• Chọn • Output... từ thanh công cụ để xem mô hình biến dạng (Hình 19)

Hình 19. Biến dạng của nền đường

• Chọn "Calculation infor..." từ menu "View" để xem hệ số ổn định (Hình 20).

Step Info				
Step 130 of 1	30 Extrapolation	n factor	1.000	
PERSIDE SIEP	Relative star	liess	0.000	
Multipliers				
	Incremental M	ultipliers	Total Multip	liers
Prescribed displacements	Mdisp:	0.000	Σ -Mdisp:	1.000
Load system A	MoadA:	0.000	Σ -MloadA:	1.000
Load system B	MloadB:	0.000	Σ -MloadB:	1.000
Soil weight	Mweight:	0.000	∑ -Mweight:	1.000
Acceleration	Maccel:	0.000	ΣMaccele	0.000
Strenght reduction factor	Msf:	0.000	Σ-Msf:	1.250
Time	Increment:	0.000	End time:	0.000
Dynamic Time	Increment:	0.000	End time:	0.000

Hình 20. Kết quả tính toán hệ số ổn định

Hình 21. Hình dạng mặt trượt

* Trường hợp có hoạt tải ở phía trên thì chọn biểu tượng từ thành công cụ để khai báo.

3. Kết quả tính hệ số ổn định của nền đường trong một số trường hợp

3.1. Bài toán 1

Nền đường có chiều cao H = 6m; mặt đường rộng B = 12m; độ dốc mái taluy 1/1,5; trong nền không có mực nước ngầm (MNN) (Hình 22). Các số liệu địa chất của đất đắp nền và nền đất tự nhiên bên dưới cho ở Bảng 1.

- Xem hình dạng mặt trượt (Hình 21).

Hình 22. Sơ đồ bài toán 1

Thay đổi giá trị góc nội ma sát (φ) và lực dính kết đơn vị (c) của đất đắp nền đường. Tính toán ổn định bằng phần mềm GEO - SLOPE và PLAXIS. Kết quả tính toán cho ở Bảng 2.

Lớp đất	Mô tả	Trọng lượng thể tích γ (kN/m ³)	Lực dính kết đơn vị c (kN/m ²)	Góc nội ma sát φ (độ)
1	Đất đắp nền	19,5	Bång 2	Bång 2
2	Đất nền tự nhiên	18,5	15	10

Bảng 1. Số liệu địa chất

Bảng 2. So sánh kết quả tính toán ổn định (hệ số ổn định theo GEO - SLOPE / PLAXIS)

$(\hat{d}\hat{\varphi})$ c (kN/m^2)	30	25	20	15	10	5
5	1,500	1,274	1,080			
3	1,393	1,274	1,084			
10	1,534	1,473	1,401	1,234	1,033	
10	1,495	1,431	1,341	1,233	1,049	
15	1,601	1,543	1,485	1,418	1,320	1,134
15	1,569	1,510	1,450	1,376	1,278	1,135
20	1,668	1,614	1,560	1,505	1,442	1,347
20	1,635	1,576	1,524	1,463	1,393	1,310
25	1,737	1,686	1,636	1,585	1,533	1,472
23	1,693	1,648	1,600	1,540	1,480	1,408
20	1,809	1,766	1,714	1,667	1,619	1,569
30	1,731	1,691	1,650	1,602	1,549	1,496

* Nhân xét:

- Từ kết quả ở bảng số 2 có thể nhận thấy khi thay đổi các thông số sức chống cắt của đất đắp nền (đất nền tự nhiên không đổi) thì hệ số ổn định khi tính bằng GEO - SLOPE và PLAXIS lệch nhau $\leq 10\%$ (chủ yếu lệch nhau $\leq 5\%$; chỉ một trường hợp $\varphi = 30^{\circ}$, $c = 5kN/m^{2}$ cho kết quả lệch nhau 7,7%). - Đa số các trường hợp thì hệ số ổn định khi tính bằng PLAXIS nhỏ hơn so với tính bằng GEO - SLOPE. Những trường hợp ngược lại thì kết quả lệch nhau rất nhỏ (gần như bằng nhau: trường hợp $\varphi = 30^{\circ}$, $c = 5kN/m^{2}$ và $\varphi = 10^{\circ}$ và $c = 10kN/m^{2}$).

3.2. Bài toán 2

Sơ đồ hình học của bài toán giống như hình 22. Các số liêu đia chất cho ở Bảng 3.

Thay đổi giá tri góc nôi ma sát (φ) và lực dính

kết đơn vị (c) của đất nền tự nhiên. Tính toán ổn định bằng phần mềm GEO - SLOPE và PLAXIS. Kết quả tính toán cho ở Bảng 4.

Lớp đất	Mô tả	Trọng lượng thể tích γ (kN/m ³)	Lực dính kết đơn vị c (kN/m ²)	Góc nội ma sát φ (độ)
1	Đất đắp nền	19,5	20	25
2	Đất nền tự nhiên	18,5	Bång 4	Bång 4

Bảng 3. Số liệu địa chất

Bảng 4. So sánh kết quả tính toán ổn định (hệ số ổn định theo GEO - SLOPE / PLAXIS)

$(\hat{d}\hat{\varphi})$ c (kN/m^2)	5	10	15	20	25	30
30	1,939	2,188	2,318	2,318	2,318	2,318
30	1,866	2,130	2,290	2,355	2,359	2,361
25	1,750	2,001	2,223	2,318	2,318	2,318
25	1,664	1,957	2,144	2,278	2,351	2,360
20	1,555	1,810	2,054	2,218	2,318	2,318
	1,462	1,767	1,987	2,143	2,252	2,345
15	1,354	1,614	1,858	2,049	2,208	2,318
	1,251	1,576	1,802	2,018	2,115	2,234
10	1,141	1,411	1,658	1,872	2,033	2,195
	1,034	1,371	1,617	1,819	1,977	2,100
5		1,196	1,447	1,688	1,849	2,011
		1,145	1,402	1,619	1,799	1,939

* Nhận xét:

- Từ kết quả ở bảng số 4 có thể nhận thấy khi thay đổi các thông số sức chống cắt của đất nền tự nhiên (đất đắp không đổi) thì hệ số ổn định khi tính bằng GEO - SLOPE và PLAXIS lệch nhau $\leq 10\%$ (chủ yếu lệch nhau $\leq 5\%$. - Đa số các trường hợp thì hệ số ổn định khi tính bằng PLAXIS nhỏ hơn so với tính bằng GEO - SLOPE. Những trường hợp ngược lại thì kết quả lệch nhau rất nhỏ ($\leq 5\%$, như trường hợp $\varphi = 25^{\circ}, c = 25 \div 30 kN/m^{2}$.

3.3. Bài toán 3

Nền đường có chiều cao H = 2 \div 6m ; mặt đường rộng B = 12m; độ dốc mái taluy 1/1,5; trong *nền không có mực nước ngầm* (Hình 23); tải trọng xe chạy: $q = 120kN/m^2$. Các số liệu địa chất của đất đắp nền và nền đất tự nhiên bên dưới cho ở Bảng 5.

Hình 23. Sơ đồ bài toán 3

Thay đổi giá trị góc nội ma sát (φ) và lực dính kết đơn vị (c) của đất đắp nền. Tính toán ổn định bằng phần mềm GEO - SLOPE và PLAXIS. Kết quả tính toán cho ở Bảng 6.

Lớp đất	Mô tả	Trọng lượng thể tích γ (kN/m ³)	Lực dính kết đơn vị c (kN/m ²)	Góc nội ma sát φ (độ)
1	Đất đắp nền	19,5	Bång 6	Bång 6
2	Đất nền tự nhiên	18,5	15	10

Bảng	5.	Số	liệu	địa	chất
------	----	----	------	-----	------

* Nhận xét:

- Từ kết quả ở bảng số 6 có thể nhận thấy trong trường hợp có xét hoạt tải ở phía trên, với nhiều chiều cao nền đắp khác nhau và khi thay đổi các thông số sức chống cắt của đất đắp (đất nền tự nhiên không đổi) thì hệ số ổn định khi tính bằng GEO - SLOPE và PLAXIS lệch nhau rất nhỏ (\leq 5%).

- Hệ số ổn định khi tính bằng PLAXIS có thể lớn hơn hoặc nhỏ hơn so với tính bằng GEO -SLOPE.

B = 12m; Taluy 1/1,5; q = 20 kN/m ²							
H (m)	2,0	3,0	4,0	5,0	6,0		
$c/\phi = 25/20$	2,240	1,928	1,708	1,559	1,399		
	2,311	1,947	1,720	1,552	1,425		
a/a = 20/10	2,261	1,933	1,692	1,524	1,345		
$c/\phi = 50/10$	2,306	1,924	1,686	1,504	1,363		
1. 15/20	2,131	1,889	1,669	1,542	1,389		
$c/\phi = 15/50$	2,204	1,888	1,681	1,535	1,419		
$c/\phi = 20/30$	2,236	1,930	1,730	1,603	1,438		
	2,312	1,966	1,749	1,596	1,465		

Bảng 6. So sánh kết quả tính toán ổn định (hệ số ổn định theo GEO - SLOPE / PLAXIS)

3.4. Bài toán 4

Nền đường cao H = 6m; mặt đường rộng B = 12m; độ dốc mái taluy 1/1,5; trong *nền có mực nước ngầm* (với chiều cao mực nước tại tim đường H_d = 1,0m; chiều cao mực nước ở mép Hh = 0,5m); Băng-ket có chiều cao H_b = 2,0m và chiều rộng L = 6m (Hình 24). Tải trọng đơn vị: $q = 20kN/m^2$. Các số liệu địa chất của đất đắp khô phía trên, đắt đắp ngập nước và nền đất bên dưới cho ở Bảng 7.

Hình 24. Sơ đồ bài toán 4

Thay đổi giá trị góc nội ma sát (φ) và lực dính kết đơn vị (c) của đất đắp nền. Tính toán ổn định bằng phần mềm GEO - SLOPE và PLAXIS. Kết quả tính toán cho ở Bảng 8.

Lớp đất	Mô tả	Trọng lượng thể tích γ (kN/m ³)	Lực dính kết đơn vị c (kN/m ²)	Góc nội ma sát φ (độ)
1	Đất đắp khô	20	Bång 8	Bång 8
2	Đất đắp ngập nước (*)	21	Giåm 5kN/m²	Giåm 5º
3	Đất nền tự nhiên (**)	19	15	10

Bảng 7. Số liệu địa chất

(*) Đất nằm dưới mực nước ngầm thì lực dính kết đơn vị và góc nội ma sát tạm tính giảm đi là $5kN/m^2$; 5^0 so với đất đắp khô; và dung trọng bão hòa $\gamma_{bh} = 21(kN/m^3)$; dung trọng đẩy nổi

 $\gamma_{dn} = 11(kN/m^3)$ (**) Đất nền tự nhiên nằm dưới mực nước ngầm có dung trọng bão hòa $\gamma_{bh} = 19kN/m^3$); dung trọng đẩy nổi $\gamma_{dn} = 9(kN/m^3)$

$(\hat{d}\hat{\rho})$ c (kN/m^2)	30	25	20	15	10	5
5	1,386	1,336	1,300			
5	1,335	1,286	1,233			
10	1,426	1,377	1,328	1,149		
10	1,368	1,334	1,296	1,053		
15	1,466	1,420	1,372	1,323	1,144	
15	1,394	1,364	1,335	1,293	1,107	
20	1,507	1,462	1,417	1,371	1,321	1,126
	1,417	1,390	1,366	1,332	1,268	1,121
25	1,549	1,506	1,462	1,418	1,371	1,320
	1,438	1,415	1,393	1,363	1,327	1,276
30	1,591	1,550	1,508	1,466	1,421	1,373
	1,457	1,437	1,417	1,391	1,359	1,319

Bảng 8. So sánh kết quả tính toán ổn định (hệ số ổn định theo GEO - SLOPE / PLAXIS)

* Nhân xét:

- Từ kết quả ở bảng số 8 có thể nhận thấy trong trường hợp nền đường có Băng-ket, có xét hoạt tải ở phía trên và ảnh hưởng của mực nước ngầm thì khi thay đổi các thông số sức chống cắt của đất đắp (đất nền tự nhiên không đổi) thì hệ số ổn định khi tính bằng GEO - SLOPE và PLAXIS lệch nhau $\leq 10\%$ (đa phần các trường hợp lệch nhau $\leq 5\%$).

- Hệ số ổn định khi tính bằng PLAXIS đều nhỏ hơn so với tính bằng GEO - SLOPE.

- Các kết quả lệch nhau > 5% đa số đều rơi vào trường hợp đất đắp có lực dính kết lớn (như $\varphi = 30^0$, $c = 25 \div 30 kN/m^2$.

4. Kết luận

Thông qua việc nghiên cứu các lý thuyết tính toán, kết hợp với việc ứng dụng các chương trình

tính toán để tính toán hệ số ổn định nền đường đắp trong nhiều trường hợp khác nhau từ đơn giản đến phức tạp, tác giả rút ra một số kết luận và kiến nghị như sau:

Mặc dù được xây dựng trên hai lý thuyết tính toán khác nhau, lịch sử ra đời khác nhau. Nhưng kết quả tính ổn định bằng phương pháp giả định mặt trượt (mặt trượt hình trụ tròn, phân tích ổn định bằng công thức Bishop đơn giản, sử dụng chương trình GEO - SLOPE mô đun SLOPE/W) và phương pháp phân tích ứng suất - biến dạng của môi trường đàn hồi – dẻo (ứng dụng phương pháp phần tử hữu hạn, sử dụng chương trình PLAXIS V8.2 trong các trường hợp đã nghiên cứu cơ bản là như nhau (kết quả lệch nhau $\leq 10\%$ là có thể chấp nhận được).

Qua các kết quả đã nghiên cứu có thể thấy phần lớn các trường hợp tính bằng chương trình

PLAXIS cho hệ số ổn định nhỏ hơn so với khi tính bằng GEO - SLOPE (các trường hợp ngược lại thì kết quả lệch nhau không đáng kể). Do đó nếu sử dụng PLAXIS để tính toán và đánh giá ổn định theo hệ số ổn định yêu cầu qui định cho công thức của Bishop $(K_{y\hat{e}uc\hat{a}u} = 1, 4; theo1)$ thì sẽ thiên về an toàn.

Nhìn chung khi lực dính kết đơn vị của đất lớn thì kết quả tính toán theo hai phương lệch nhau lớn hơn so với khi lực dính kết đơn vị của đất nhỏ. Điều này một lần nữa khẳng định tính chất phức tạp của đất dính mà các tài liệu về cơ học đất đã nêu.

Từ các kết luận trên, trong phạm vi nghiên cứu, tác giả kiến nghị:

- Khi phân tích ổn định các mái dốc nói chung và nền đường nói riêng có thể sử dụng một trong hai phương pháp tính toán đã nêu mà vẫn đảm bảo sự chính xác (điều này sẽ giúp các đơn vị thẩm tra, chủ đầu tư có cơ sở xét duyệt phương án tính toán của các đơn vị tư vấn thiết kế).

- Tuy nhiên như đã phân tích, trường hợp đất đắp có lực dính kết đơn vị lớn thì để đảm bảo an toàn nên phân tích ổn định bằng nhiều phương pháp khác nhau để so sánh, đánh giá, nhằm đảm bảo sự an toàn cho công trình. - Cần phải đưa phương pháp phân tích ứng suất - biến dạng vào các qui trình tính toán ổn định các mái dốc nói chung và nền đường nói riêng. Bên cạnh đó cần bổ sung việc qui định hệ số ổn định yêu cầu $(K_{y\hat{e}u\,c\hat{a}u})$ là 1,4 (như qui định cho công thức của Bishop) vào tài liệu [1].

Tài liệu tham khảo

- Bộ Giao thông Vận tải (2000), Quy trình khảo sát thiết kế nền đường ôtô đắp trên đất yếu 22TCN – 262 -2000, Hà Nội
- [2] Đỗ Văn Đệ (2002), Các bài toán mẫu tính bằng phần mềm SLOPE/W, Nhà xuất bản Xây dựng, Hà Nội.
- [3] PGS.TS Trần Tuấn Hiệp (2001), Thiết kế tối ưu nền đường đắp, Bài giảng cao học, Hà Nội.
- [4] Trương Hồng Minh (2012), Nghiên cứu úng dụng các phần mềm GEO - SLOPE, PLAXIS, GEO 5 vào tính toán thiết kế nền đường, Luận văn Thạc sỹ Kỹ thuật, Đại học Giao Thông Vận Tải, Hà Nội.
- [5] Nguyễn Sỹ Ngọc (2009), Địa kỹ thuật công trình, Nhà xuất bản Giao thông vận tải, Hà Nội.
- [6] Vũ Công Ngữ Phạm Huy Đông, Ôn định mái dốc theo phương pháp giả định mặt trượt và phương pháp phân tích đàn hồi – dẻo, Bài viết GS Vũ Công Ngữ gửi tặng CETEC.
- [7] R.B.J Brinkgreve, 2D Version 8, Plaxis manuals, Netherlands.
- [8] John Krahn (2004), Stability Modeling with SLOPE/W, Frist Edition, Revision 1..