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In constructionmanagement, the task of planning project schedules with consideration of labor utilization is very crucial. However,
the commonly used critical pathmethod (CPM) does not inherently take into account this issue. Consequently, the labor utilization
of the project schedule derived from the CPM method often has substantial low ebbs and high peaks. This research proposes a
model to obtain project schedule with the least fluctuation in labor demand while still satisfying the project deadline and maintain
the project cost. The Differential Evolution (DE), a fast and efficient metaheuristic, is employed to search for the most desirable
solution of project execution among numerous combinations of activities’ crew sizes and start times. Furthermore, seven DE’s
mutation strategies have also been employed for solving the optimization at hand. Experiment results point out that the Target-to-
Best 1 and a new hybridmutation strategy can attain the best solution of project schedule with the least fluctuation in labor demand.
Accordingly, the proposed framework can be an effective tool to assist decision-makers in the project planning phase.

1. Introduction

Resources in construction projects typically consist of man-
power, machinery, materials, money, information, and man-
agement decisions [1]. Needless to say, good resource man-
agement is essential to ensure that the construction project
can be accomplished on schedule and within budget [2–
4]. To some extent, it is reasonable to state that the act
of construction project management involves nothing but
management of resources [5].

In practice, the CPM, as a commonly used tool for
project scheduling, has shown to be helpful when the project
deadline is unfixed and the resources are also free from
restraints. Since the CPM normally does not incorporate
a deadline or resource limits, supplementary procedures,
such as resource leveling [6, 7] and allocation [7], must be
employed separately after the initial schedule is established
[8].

In most practical situations, project resources are avail-
able in certain quantities and a fluctuated resource profile

is proved to be very costly for the contractors [6, 9]. Thus
far, the most challenging problem in project planning is
to achieve an optimal project execution which results in
an appropriate resource utilization with fixed duration. The
resource demand should be made as smooth as possible to
alleviate short-term peaks or low ebbs [2, 10].

In almost countries, manpower, or labor, is the most
crucial resource; thus, planning a schedule which features
a smooth labor utilization with low peaks is indeed bene-
ficial for the construction contractors. Needless to say, this
leads to reduced costs of temporary facilities for workers
and enhancement of on-site safety. Therefore, developing
schedulingmodel that optimizes the project schedulewithout
sacrificing the project completion deadline as well as the
project cost is a practical need of construction managers.

Based on the literature review, it is recognizable that
employing metaheuristic approaches to solve complex engi-
neering problems has been a major trend in the research
community [11–17]. Among metaheuristic approaches, the
Differential Evolution (DE) [18] has received an increasing
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attention and this algorithm has been applied in a wide span
of problem domain [19–22].The DE employs an efficient way
of self-adaptingmutation strategies for function optimization
over continuous space. The advantages of this method are
its simple structure, the ease of implementation, fast conver-
gence, quality of found solution, and robustness [23].

Recently, various research works have been dedicated in
harnessing the DE’s capability as well as improving its search-
ing efficiency. Brest et al. [24], Zhang and Sanderson [25],
Qin et al. [26], and Zheng et al. [20] presented self-adaptive
versions of DE in which novel mechanisms of parameter
setting are utilized. Hoang [27] introduced a probabilistic
similarity-based selection operator that can enhance the DE’s
selection process. Rahnamayan et al. [28] put forward an
opposition-based DE (ODE) which exploits the concept of
opposition-based learning for population initialization and
generation jumping. Coelho et al. [19], Lu et al. [29], and
Cheng and Tran [30] applied the chaotic mapping to improve
theDE’s searching diversity. Yong et al. [31] proposed a variant
of DE with composite trial vector generation strategies and
control parameters.

Therefore, this study employed theDE algorithm to tackle
the problem of optimizing the labor utilization by means of
intelligently scheduling the project’s activities. To achieve a
more even resource profile, noncritical activities are allowed
to shift along available floating times. Moreover, different
from previous works in resource leveling [9, 32, 33], the crew
sizes of activities are also optimized. Such framework not only
is more realistic but also can enhance the flexibility in project
scheduling and potentially bring about better solutions.

The rest of the paper is organized as follows. Section 2
provides the research method. The proposed model for
optimizing construction project schedule is described in
Section 3. Section 4 reports the experimental result and
comparison. Some conclusions of the research are stated in
Section 5.

2. Research Method

2.1. The Problem of Optimizing Labor Utilization for Con-
struction Project. As mentioned earlier, the CPM normally
does not integrate a deadline constraint and resource limits.
Furthermore, it does not take into account the efficiency
of labor utilization during project execution. Therefore, a
process of optimization is often required to adjust the CPM
schedule. Herein, the objective is to shift the noncritical
activities along their available float times (Figure 1) and select
appropriate crew sizes for all activities (Figure 2) so that the
labor profile is as smooth as possible. In these two figures,
activities A and B have a start-to-start (SS) relationship;
activities B and C have a finish-to-start (FS) relationship.The
original activity B can be finished in 2 shifts with a crew of 30.
Alternatively, a crew of 15 can accomplish the activity B in 4
shifts.

It is noted that altering the crew size of an activity directly
accelerates or decelerates its production rate and therefore
changes the project duration. Furthermore, the alteration of
project schedule must not extent the total project duration
and cost. Noticeably, changing the crew size of an activity

Act. A
5 5

SS
30 30

Shifted act. B
30 30

Act. C
15 15 15

FS

Labor
30 30

15 15 15

5 5

Time

Float time of

Original act. B

act. B

Figure 1: Labor leveling by shifting activity B’s start time within its
float.
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Figure 2: Labor leveling by changing crew size of activity B.

does not increase its direct cost. In addition, since the total
project duration is not allowed to prolong, the indirect cost
of the project is also maintained. Therefore, it is reasonable
to state that the optimization process does not alter the total
project cost.

Similar to the resource leveling problem [34], themoment
of daily labor demand around the time axis is employed as the
objective function:

𝑓 =
𝑇

∑
𝑖=1

𝐿2
𝑖
, (1)

where 𝑇 represents the project duration; 𝐿
𝑖
denotes the total

labor requirements of all activities performed at time unit 𝑖.
The constraints of the optimization problems can be

stated as follows:

(1) The total project duration, which is the completion
time of the last activity in the network, is fixed.

(2) The precedence constraints between an activity and
all the activities in its successor set must be respected.

(3) All the crew sizes of activities are integers within the
lower and upper boundaries.
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(4) The duration of an activity (measured in shift) is
computed as follows:

𝐷
𝑖
=
𝑊
𝑖

CS
𝑖
⋅HR
(shift) , (2)

where𝐷
𝑖
denotes the duration (shift) of the activity 𝑖.

𝑊
𝑖
is the required working hour of the activity 𝑖. CS

𝑖

is the crew size of the activity 𝑖. HR is the number of
working hours in a shift; typically HR = 8 (hour).

(5) All the start times of activities are nonnegative inte-
gers within their available float times.

2.2. Differential Evolution (DE). The DE [18] is currently one
of the most powerful metaheuristics for solving complex
optimization problems. The algorithm generally consists of
four phases which are initialization, mutation, crossover, and
selection.Thewhole process is repeated until the termination
condition is satisfied. Given the fact that the problem of
interest is to minimize a cost function 𝑓(𝑋), where the
number of decision variables is𝐷, we can describe each phase
of DE in details.

2.2.1. Initialization. The DE initiates the optimization pro-
cess by randomly generating NP number of 𝐷-dimensional
parameter vectors 𝑋

𝑖,𝑔
, where 𝑖 = 1, 2, . . . ,NP and 𝑔

represents the current generation.

2.2.2. Mutation. For each target vector (a vector in the
current population), a mutant vector is produced by the
following strategies [23, 35]:

DE/Rand/1:

𝑉
𝑖,𝑔+1
= 𝑋
𝑟1,𝑔
+ 𝐹 (𝑋

𝑟2,𝑔
− 𝑋
𝑟3,𝑔
) , (3)

DE/Rand/2:

𝑉
𝑖,𝑔+1
= 𝑋
𝑟1,𝑔
+ 𝐹 (𝑋

𝑟2,𝑔
− 𝑋
𝑟3,𝑔
) + 𝐹 (𝑋

𝑟4,𝑔
− 𝑋
𝑟5,𝑔
) , (4)

DE/Best/1:

𝑉
𝑖,𝑔+1
= 𝑋best,𝑔 + 𝐹 (𝑋𝑟1,𝑔 − 𝑋𝑟2,𝑔) , (5)

DE/Best/2:

𝑉
𝑖,𝑔+1
= 𝑋best,𝑔 + 𝐹 (𝑋𝑟2,𝑔 − 𝑋𝑟3,𝑔)

+ 𝐹 (𝑋
𝑟4,𝑔
− 𝑋
𝑟5,𝑔
) ,

(6)

DE/Target-to-Best/1:

𝑉
𝑖,𝑔+1
= 𝑋
𝑖,𝑔
+ 𝐹 (𝑋best,𝑔 − 𝑋𝑖,𝑔) + 𝐹 (𝑋𝑟1,𝑔 − 𝑋𝑟2,𝑔) , (7)

where 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑟5 are random indexes lying between
1 and NP.These randomly chosen integers are also selected to
be different from the index 𝑖 of the target vector. 𝐹 denotes
the mutation scale factor, which controls the amplification of
the differential variation. 𝑉

𝑖,𝑔+1
represents the newly created

mutant vector.
In addition to the above five strategies, this research

proposes investigating two mutation schemes:

DE/Target-to-Best/2:

𝑉
𝑖,𝑔+1
= 𝑋
𝑖,𝑔
+ 𝐹 (𝑋best,𝑔 − 𝑋𝑖,𝑔) + 𝐹 (𝑋𝑟1,𝑔 − 𝑋𝑟2,𝑔)

+ 𝐹 (𝑋
𝑟3,𝑔
− 𝑋
𝑟4,𝑔
) ,

(8)

Hybrid DE/Rand/1 and DE/Best/1:

𝑉
𝑖,𝑔+1
= 𝜆 ⋅ 𝑋best,𝑔 + (1 − 𝜆) ⋅ 𝑋𝑟1,𝑔

+ 𝐹 (𝑋
𝑟2,𝑔
− 𝑋
𝑟3,𝑔
) ,

(9)

where 𝜆 = 1 − exp(−𝑔/𝛿) controls the contribution of the
best vector and a randomly chosen vector 𝑋

𝑟1,𝑔
. 𝛿 is a free

parameter. The idea is that as the generation proceeds, the
value of 𝜆 increases gradually from 0 to 1, and thus the best
vector (𝑋best) has more influence over the mutation process.
Meanwhile, the effect of randomness is reducedwith the hope
of accelerating the algorithm convergence.

2.2.3. Crossover. This stage diversifies the current population
by exchanging components of target vector and mutant
vector. In this stage, a trial vector is created as follows:

𝑈
𝑗,𝑖,𝑔+1
=
{
{
{

𝑉
𝑗,𝑖,𝑔+1
, if rand

𝑗
≤ Cr or 𝑗 = rnb (𝑖)

𝑋
𝑗,𝑖,𝑔
, if rand

𝑗
> Cr and 𝑗 ̸= rnb (𝑖) ,

(10)

where 𝑈
𝑗,𝑖,𝑔+1

is called the trial vector. 𝑗 denotes the index
of element for any vector. rand

𝑗
denotes a uniform random

number lying between 0 and 1. Cr is the crossover probability.
rnb(𝑖) is a randomly chosen index of {1, 2, . . . ,NP} which
guarantees that at least one parameter from themutant vector
(𝑉
𝑗,𝑖,𝑔+1

) is copied to the trial vector (𝑈
𝑗,𝑖,𝑔+1

).

2.2.4. Selection. The trial vector is compared to the target
vector. If the trial vector can yield a lower objective function
value than its parent, then the trial vector replaces the posi-
tion of the target vector. The selection operator is expressed
as follows:

𝑋
𝑖,𝑔+1
=
{
{
{

𝑈
𝑖,𝑔

if 𝑓 (𝑈
𝑖,𝑔
) ≤ 𝑓 (𝑋

𝑖,𝑔
)

𝑋
𝑖,𝑔

if 𝑓 (𝑈
𝑖,𝑔
) > 𝑓 (𝑋

𝑖,𝑔
) .

(11)

3. The Proposed Schedule Optimization Model

This section of the paper describes the proposed construction
project schedule optimization model. The model, named
as the DE-based Labor utilization Optimization for Con-
struction Project (DeLOCP), aims at intelligently shifting
noncritical activities’ start time and determining all activities’
crew size to achieve the most desirable labor profile for the
project. Meanwhile, it must retain the total project cost and
duration.

The desirable labor profile is achieved by minimizing the
fluctuations of daily labor demand. The model necessitates
inputs of project information including precedence relation-
ship, required work hour, and lower and upper boundaries
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Begin Algorithm
Set Precedence Relationship, Required Work Hour, Lower and Upper Boundaries of Crewsize
// activity information
SetCrewsize // crew information of each activity
CalculateDuration // durations of activities is computed by (2)
For 𝑖 = 1 :ActNum // Performing forward CPM calculation

// ActNum = number of activities
Calculate ES(𝑖) // Early start of activity 𝑖

EF(𝑖) // Early finish of activity 𝑖
End For
LF(ActNum) = EF(ActNum)
LS(ActNum) = LF(ActNum) − Duration(ActNum)
𝑗 = ActNum − 1
While 𝑗 ≥ 1 // Performing backward CPM calculation

Calculate LF(𝑖) // Late finish of activity 𝑗
LS(𝑖) // Late start of activity 𝑗

EndWhile
Return ES, LS, EF, LF
End Algorithm

Algorithm 1: CPM scheduling.
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Figure 3: A typical early start labor profile.

of crew size. With such information, Algorithm 1 (CPM
Scheduling) is used to calculate the CPM schedule of the
project. In Algorithm 2, the project labor utilization is eval-
uated by computing the fitness function which is composed
of themoment of daily resource demand around the time axis
and a penalty term used when the actual project duration
is greater than the project deadline. When the parameters
of the DE algorithm, including the maximum number of
generations (𝐺max), the population size (PopulationSize), the
mutation scale (𝐹), and the crossover probability (Cr), are
set, Algorithm 3 (DeLOCP) can perform the optimization
process to obtain the project schedule which features the least
fluctuated labor profile.

4. Experimental Result

In this section, the capability of the proposed DeLOCP is
illustrated via a construction project which consists of 11
activities (Table 1). Table 1 describes the activities’ relation-
ships as well as the required work load, reflected by the
required working hours, of all activities. Furthermore, the

Table 1: Project information.

Activity
number

Activity
relationship

Required working hour
(hour)

1 100
2 1FS 220
3 1FS, 2SS 380
4 1FS 210
5 2FS, 3FS 520
6 2FS, 4FS 220
7 4FS, 6SS 370
8 5FS, 7FS 380

9 5FS, 6FS, and
8SS 320

10 7FS 630

11 8FS, 9FS, and
10FS 100

example of calculating activity durations based on infor-
mation of the required work load and crew size has been
provided in Table 2. The project must be completed in 16
days. Assuming that one day contains 2 shifts, the contractor
must accomplish the project within 32 shifts. The crew size is
allowed to vary between 1 and 20. Figure 3 demonstrates the
labor profile obtained from a typical early start schedule with
the crew size calculated in Table 2.

Since the decision variables include the start times and
crew size of 11 activities, the number of decision variables
in the problem at hand is 𝐷 = 22. Based on the recom-
mendation from previous works [18, 19], the population size,
the mutation scale, the crossover probability, and maximum
generation of the DE are selected as PopulationSize = 6 ⋅ 𝐷,
𝐹 ∼Normal(0.5, 0.152), Cr = 0.8, and𝐺max = 3000. Moreover,
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Table 2: Example of activity duration calculation.

Activity
number

Required working
hour (hour)

Crew size
(person)

Calculated
duration (shift)

Rounded duration
(shift)

1 100 5 2.5 = 100/(5 ∗ 8) 3 = ceil(2.5)
2 220 5 5.5 6
3 380 10 4.8 5
4 210 5 5.3 6
5 520 5 13.0 13
6 220 5 5.5 6
7 370 10 4.6 5
8 380 10 4.8 5
9 320 5 8.0 8
10 630 10 7.9 8
11 100 7 1.8 2
Note: each shift lasts 8 hours.

Begin Algorithm
Set ProjectDeadline, WorkingHoursPerShift // project information
DefinePenaltyFactor // used when the constraint of project deadline is violated
Define ES, LS, EF, LF of each activity using Algorithm 1
Define Start Time of Activity: StartTime(𝑖) // ES(𝑖) ≤ StartTime(𝑖) ≤ LS(𝑖)
Calculate Finish Time of Activity: FinishTime(𝑖) = StartTime(𝑖) + Duration(𝑖)
Calculate Daily Labor Demand: 𝐿(𝑖)
CalculateMoment of 𝐿 around time axis𝑀

𝑥
by (1)

CalculateDeadlinePenalty= PenaltyFactor ⋅max(0, ProjectDuration − ProjectDeadline);
Calculate Fitness =𝑀

𝑥
+ DeadlinePenalty

Return Fitness
End Algorithm

Algorithm 2: Evaluating project labor utilization.

Begin Algorithm
DefinePopulationSize, MuationScaleFactor, CrossoverProbablility
Initialize Population of vectors
Calculate Fitness of each vector using Algorithm 2
Identify BestSolution
For 𝑖 = 1 :𝐺max // 𝐺max = maximum number of generations

For 𝑗 = 1 : PopulationSize
PerformMutation using one strategy among (3), (4), (5), (6), (7), (8), and (9)
Perform Crossover using (10)
Perform Selection using (11)
UpdateBestSolution

End For
End For
ReturnBestSolution
End Algorithm

Algorithm 3: The DeLOCP.

7 mutation strategies (from (3) to (9)) are employed in the
mutation operator. When the strategy of Hybrid DE/Rand/1
and DE/Best/1 is used, the free parameter 𝛿 is set to be 100 on
the basis of experiment.

In the experiment, the DeLOCP with each mutation
strategy is run 20 times and the best result, the average

result, the standard deviation of the result, and the worst
result are reported in Table 3. It is observable that the
DeLOCP with the mutation strategy of DE/Target-to-Best/1
and Hybrid DE/Rand/1 and DE/Best/1 have produced
the best solution: fitness function = 3054 (with average
labor demand = 13.8, maximum labor demand = 16.0,
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Table 3: Result comparison.

Mutation strategy Fitness Average labor
demand

Maximum
labor demand

Minimum
labor demand

Project
duration

Generation
found best

DE/Rand/1
Best 3066.0 13.8 16.0 7.0 32.0 59.0
Average 3122.6 13.8 17.1 9.4 32.0 268.7
Standard deviation 68.3 0.1 1.8 0.9 0.0 110.4
Worst 3253.5 14.0 21.0 10.0 32.0 461.0

DE/Rand/2
Best 3247.0 13.9 17.0 4.0 30.0 37.0
Average 3388.3 14.2 21.1 6.5 31.8 163.7
Standard deviation 69.9 0.3 2.6 1.7 0.5 75.8
Worst 3515.0 14.8 26.0 10.0 32.0 315.0

DE/Best/1
Best 3085.0 13.8 16.0 5.0 32.0 25.0
Average 3166.1 13.8 18.3 8.2 32.0 74.7
Standard deviation 78.8 0.1 1.7 1.8 0.0 53.4
Worst 3347.0 14.0 21.0 12.0 32.0 223.0

DE/Best/2
Best 3055.5 13.7 15.0 7.0 32.0 50.0
Average 3118.5 13.8 17.0 10.2 32.0 133.2
Standard deviation 51.3 0.1 1.1 1.5 0.0 49.3
Worst 3257.0 14.1 19.0 13.0 32.0 223.0

DE/Target-to-Best/1
Best 3054.0 13.7 15.0 7.0 32.0 69.0
Average 3092.7 13.8 17.0 9.8 32.0 148.0
Standard deviation 29.1 0.1 1.5 1.8 0.0 72.7
Worst 3168.0 13.9 20.0 13.0 32.0 344.0

DE/Target-to-Best/2
Best 3126.0 13.8 15.0 4.0 31.0 31.0
Average 3245.5 14.0 18.4 7.5 32.0 123.1
Standard deviation 57.9 0.1 1.9 2.0 0.2 50.2
Worst 3357.0 14.3 23.0 11.0 32.0 217.0

Hybrid DE/Rand/1 and DE/Best/1
Best 3054.0 13.7 15.0 8.0 32.0 69.0
Average 3099.0 13.8 17.4 10.4 32.0 146.4
Standard deviation 27.4 0.0 1.8 1.0 0.0 73.7
Worst 3151.0 13.9 23.0 12.0 32.0 272.0

minimum labor demand = 12, and project duration = 32.0
(shift)). The optimized crew sizes and start times of all
activities are [13, 7, 4, 9, 6, 4, 6, 7, 8, 8, 13] and [1, 2, 2, 6, 14,
9, 9, 25, 27, 17, 32], respectively. The optimized daily labor
demand is illustrated in Figure 4.

Thus, considering the best found solution, the DE/
Target-to-Best/1 and Hybrid DE/Rand/1 and DE/Best/1
have both found the best solution (3054), followed by
the DE/Best/2 (3055.5), DE/Rand/1 (3066.0), DE/Best/1
(3085.0), DE/Target-to-Best/2 (3126.0), and DE/Rand/2
(3247.0). Moreover, in terms of average fitness function, the
strategy DE/Target-to-Best/1 has produced most desirable

outcome (3092.6); the DeLOCP with the strategy of Hybrid
DE/Rand/1 and DE/Best/1 has yielded the second best result
(3099.0). On the other hand, when considering the standard
deviation of the result and the worst result, the mutation
strategy of Hybrid DE/Rand/1 and DE/Best/1 shows better
performance than that of the DE/Target-to-Best/1.

Moreover, the convergence property of each mutation
strategy can be judged by analyzing the “Generation found
best.” The “Generation found best” denotes the number
of generations where the best solution was found by the
DeLOCP. It can be seen that the strategy DE/Best/1 tends to
converge very fast. On average, the algorithm only needs 74.7
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Figure 4: The labor profile optimized by the DeLOCP.

generations to converge. On the other hand, the convergence
of the DeLOCP which uses the strategy DE/Rand/1 is the
slowest (average “Generation found best” = 268.7 genera-
tion). Nevertheless, both of the above strategies seem to get
stuck in some local optimal.

Furthermore, the two strategies (the Hybrid DE/Rand/1
and DE/Best/1 and the DE/Target-to-Best/1) converge faster
than the DE/Rand/1 and slower than the DE/Best/1. Inter-
estingly, the average “Generation found best” of Hybrid
DE/Rand/1 and DE/Best/1 (146.4) and the DE/Target-to-
Best/1 (148) is almost equivalent. Based on that, it can
be stated that these two mutation schemes possess almost
the same convergence property. Thus, compared to other
mutation strategies, the Hybrid DE/Rand/1 and DE/Best/1
and the DE/Target-to-Best/1 manifest better compromise
between the convergence property and the quality of solution.

5. Conclusion

This research proposes a model, named DeLOCP, for opti-
mizing construction project schedule with consideration of
labor utilization. The DeLOCP, based on the DE algorithm,
intelligently shifts noncritical activities’ start times and deter-
mines activities’ crew sizes to attain the most desirable labor
profile. Therefore, the approach does not alter the total
project cost and duration. Experimental result shows that
the proposed method has successfully optimized the project
schedule which features a smooth labor profile with insignif-
icant peaks and ebbs. This study also investigates 7 mutation
strategies of the DE algorithm. The result comparison has
demonstrated that the DE/Target-to-Best/1 and the newly
proposedHybridDE/Rand/1 andDE/Best/1 have attained the
best optimization performance. Future developments of the
current research includes applying the proposed method for
solving large scale construction projects and investigating the
potentiality of hybridization of metaheuristic methods for
tackling the problem at hand.
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“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[25] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[26] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[27] N.-D. Hoang, “NIDE: a novel improved differential evolution
for construction project crashing optimization,” Journal of
Construction Engineering, vol. 2014, Article ID 136397, 7 pages,
2014.

[28] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,
“Opposition-based differential evolution algorithms,” in Pro-
ceedings of the IEEE Congress on Evolutionary Computation
(CEC ’06), pp. 2010–2017, IEEE, Vancouver, Canada, July 2006.

[29] Y. Lu, J. Zhoun, H. Qin, Y. Wang, and Y. Zhang, “Chaotic
differential evolution methods for dynamic economic dispatch
with valve-point effects,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 2, pp. 378–387, 2011.

[30] M. Cheng and D. Tran, “Integrating chaotic initialized oppo-
sition multiple-objective differential evolution and stochastic
simulation to optimize ready-mixed concrete truck dispatch
schedule,” Journal of Management in Engineering, 2015.

[31] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with
composite trial vector generation strategies and control param-
eters,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 55–66, 2011.

[32] S. E. Christodoulou, G. Ellinas, and A. Michaelidou-Kamenou,
“Minimummomentmethod for resource leveling using entropy
maximization,” Journal of Construction Engineering and Man-
agement, vol. 136, no. 5, pp. 518–527, 2010.

[33] K. El-Rayes and D. H. Jun, “Optimizing resource leveling in
construction projects,” Journal of Construction Engineering and
Management, vol. 135, no. 11, pp. 1172–1180, 2009.

[34] J. Martinez and P. Ioannou, “Resource leveling based on the
modified minimum moment heuristic,” in Proceedings of the
Conference of Computing in Civil and Building Engineering, pp.
287–294, American Society of Civil Engineers, Anaheim, Calif,
USA, June 1993.

[35] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evo-
lution: A Practical Approach to Global Optimization, Springer,
2005.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


