THỰC HÀNH THIẾT KẾ KẾT CẤU KHUNG BÊTÔNG CỐT THÉP

I. Lý thuyết tính toán

1.1. Tính toán và tổ hợp nội lực

1.1.1. Tính toán nội lực

a. Sơ đồ tính toán nội lực

- Sơ đồ không biến dạng (tính toán bậc I)

- Sơ đồ biến dạng (tính toán bậc II)

b. Phương pháp tính toán nội lực

- Các phương pháp tính trong giới hạn đàn hồi (dùng các phương pháp tính của Cơ học kết cấu hoặc các phần mềm tính toán kết cấu như SAP, ETAB,...để tính nội lực).

Phương pháp cân bằng giới hạn có kể đến sự hình thành các khớp dẻo trong các cấu kiện.

Ở đây, nội lực trong khung đều được xác định theo sơ đồ không biến dạng (tính toán bậc I), theo các phương pháp tính trong giới hạn đàn hồi.

Dùng các phần mềm tính toán kết cấu (SAP, ETAB,...) để tính nội lực cho từng trường hợp tải trọng (tĩnh tải, hoạt tải đứng 1, hoạt tải đứng 2, gió trái, gió phải).

1.1.2. Tổ hợp nội lực

a. Nguyên tắc chung

- Mục đích của việc tổ hợp nội lực: là tìm ra nội lực bất lợi tại tất cả các tiết diện trong kết cấu. Thực ra, chỉ cần quan tâm đến các tiết diện quan trọng. Các tiết diện đó là:

 + Đối với cột: tiết diện dưới chân và trên đỉnh cột. Có thể thêm các tiết diện khác nếu nội lực lớn.

+ Đối với xà ngang thẳng: tiết diện giữa nhịp và tiết diện ở hai đầu tiếp giáp với cột.
 Có thể thêm các tiết diện khác nếu có nội lực lớn như tiết diện dưới tải trọng tập trung.

- Tùy thành phần các tải trọng được tính đến, có hai loại tổ hợp: tổ hợp cơ bản và tổ hợp đặc biệt.

+ Tổ hợp cơ bản gồm: tĩnh tải, hoạt tải dài hạn, hoạt tải ngắn hạn.

+ Tổ hợp đặc biệt gồm: tĩnh tải, hoạt tải dài hạn, hoạt tải ngắn hạn và một trong các tải trọng đặc biệt (động đất, nổ, va chạm, ...).

- Tổ hợp cơ bản có một hoạt tải thì giá trị của hoạt tải được lấy toàn bộ.

Tổ hợp cơ bản có từ hai hoạt tải trở lên thì giá trị tính toán của hoạt tải hoặc các nội
 lực tương ứng của chúng phải được nhân với hệ số tổ hợp là 0,9.

 - Những hoạt tải loại trừ nhau thì không được xuất hiện trong cùng một tổ hợp (ví dụ: gió trái và gió phải). Đối với kết cấu quan trọng, có nhịp và tải trọng lớn, cần thiết phải vẽ biểu đồ bao nội
 lực để có cơ sở chắc chắn cho việc bố trí (cắt, uốn) cốt thép theo biểu đồ bao vật liệu.

 - Ở mỗi tiết diện quan trọng, phải tìm được các cặp nội lực nguy hiểm nhất, cụ thể như sau:

```
+ Đối với các phần tử dầm: M<sub>max</sub>, M<sub>min</sub>, Q<sub>max</sub>
+ Đối với các phần tử cột: M<sub>max</sub> và N<sub>tư</sub>
M<sub>min</sub> và N<sub>tư</sub>
```

 $N_{max} \; v a \; M_{t t r}$

Riêng đối với tiết diện chân cột tầng 1, ngoài N_{tu} còn phải tính thêm Q_{tu} để phục vụ cho việc tính móng.

b. Nội dung chi tiết:

Với nhà khung BTCT ít tầng, đã thiết lập 5 trường hợp tác dụng của tải trọng:

+ Tĩnh tải (TT)

+ Hoạt tải đứng 1 (HT1)

+ Hoạt tải đứng 2 (HT2)

+ Gió trái (GT)

+ Gió phải (GP)

Thì ta có thể lập các tổ hợp như sau:

TH1: TT + HT1 (hệ số tổ hợp tương ứng: 1/1)

TH2: TT + HT2 (1/1)

TH3: TT + GT (1/1)

TH4: TT + GP (1/1)

TH5: TT + HT1 + HT2 (1/0,9/0,9)

TH6: TT + HT1 + GT (1/0,9/0,9)

TH7: TT + HT1 + GP (1/0,9/0,9)

TH8: TT + HT2 + GT (1/0,9/0,9)

TH9: TT + HT2 + GP (1/0,9/0,9)

TH10: TT + HT1 + HT2 + GT (1/0,9/0,9/0,9)

TH11: TT + HT1 + HT2 + GP (1/0,9/0,9/0,9)

1.2. Tính toán tiết diện

1.2.1 Tính toán dầm

a. Tính cốt thép dọc(trường hợp đặt cốt thép đơn)

- Cơ sở tính toán: trường hợp phá hoại dẻo.

Sơ đồ ứng suất của tiết diện chữ nhật đặt cốt đơn

Sơ đồ ứng suất để tính toán tiết diện theo trạng thái giới hạn lấy như sau:

Úng suất trong cốt thép chịu kéo A_s đạt tới cường độ chịu kéo tính toán R_s .

Ứng suất trong vùng bêtông chịu nén đạt tới cường độ chịu nén tính toán R_b và sơ đồ ứng suất gần đúng có dạng phân bố đều. Vùng bêtông chịu kéo không được tính cho chịu lực vì đã nứt.

Bài toán tính toán cốt thép tiết diện chữ nhật: Cho biết: (*b*, *h*, *M*, *R_b*, *R_s*); Tính diện tích cốt thép *A_s*.

<u>Giải</u>:

- Giả thiết: $a = 3 \div 6 \ cm$; $h_o = h - a$

 $-_{\rm Tính} \alpha_m = \frac{M}{R_b b h_o^2}$

- Các trường hợp xảy ra như sau:

Trường hợp 1:

Nếu $\alpha_m \leq \alpha_R$ điều kiện hạn chế thỏa mãn, suy ra $\zeta = 0, 5(1 + \sqrt{1 - 2\alpha_m})$

Tính
$$A_s = \frac{M}{R_s \zeta h_o}$$
; Tính $\mu = \frac{A_s}{bh_o} 100\%$ và kiểm tra $\mu \ge \mu_{\min}$

Trường hợp 2:

Nếu $\alpha_m > \alpha_R$: điều kiện hạn chế không thỏa mãn thì phải xử lý:

+ Tăng cấp độ bền chịu nén của bêtông *B*.

- + Tăng kích thước tiết diện b, h (thường tăng h).
- + Đặt cốt kép

Bài toán tính toán cốt thép tiết diện chữ T:

- Cơ sở tính toán: trường hợp phá hoại dẻo.

Sơ đồ ứng suất dùng để tính tiết diện chữ T

Gọi M_f là mômen giới hạn ứng với trường hợp trục trung hòa đi qua mép dưới của cánh. $M_f = R_b \dot{b}_f \dot{h}_f (h_o - 0.5 \dot{h}_f)$

Sơ đồ ứng suất khi trục trung hòa qua mép dưới của cánh Gọi M là mômen uốn tính toán do ngoại lực gây ra

- So sánh mômen ngoại lực M với M_f :

+ Nếu $M \leq M_f$: thì trục trung hòa đi qua cánh, tính toán theo tiết diện chữ nhật có

kích thước $\dot{b_f} \times h$ (Xem trong phần cấu kiện chữ nhật đặt cốt đơn).

+ Nếu $M > M_f$: thì trục trung hòa đi qua sườn, tính toán theo tiết diện chữ T.

Sau đây ta xét trường hợp này (thường không xảy ra).

Ghi chú:

Tại mỗi tiết diện tính toán có 2 giá trị nội lực tổ hợp là: $M_{max} \& M_{min}$:

Nếu M_{max} & $M_{min} \ge 0 \Longrightarrow$ cốt thép phía dưới tính theo M_{max} , cốt thép phía trên đặt theo cấu tạo ($A_s \ge \mu_{\min} bh_0$)

Nếu M_{max} & $M_{min} < 0 \implies$ cốt thép phía trên tính theo M_{min} , cốt thép phía dưới đặt theo cấu tạo ($A_s \ge \mu_{\min} bh_0$)

Nếu $M_{max} \ge 0$ & $M_{min} \le 0 \Longrightarrow$ cốt thép phía dưới tính theo M_{max} , cốt thép phía trên tính theo M_{min}

b.Tính toán cốt đai

Kiểm tra điều kiện khả năng chịu cắt của bêtông:

$$Q_{b\min} = \varphi_{b3} \left(1 + \varphi_f + \varphi_n \right) R_{bt} b h_o$$

+ Nếu Q_{bmin} > Q không cần tính toán cốt thép đai, chỉ cần đặt cốt ngang theo cấu tạo.

+ Nếu Q_{bmin} < Q cần tính toán cốt thép đai

Đối với bêtông nặng lấy $\varphi_{b3} = 0,6$, tính toán với tiết diện chữ nhật bỏ qua ảnh hưởng của cánh lấy $\varphi_f = 0$, bỏ qua ảnh hưởng lực dọc lấy $\varphi_n = 0$.

Chọn đai ϕ , *n* nhánh.

Khoảng cách giữa hai cốt đai theo tính toán:

$$s_{tt} = \frac{R_{sw}.A_{sw}.4\varphi_{b2}.(1+\varphi_f+\varphi_n).R_{bt}.b.h_0^2}{Q^2}$$

Đối với bêtông nặng lấy $\varphi_{b2} = 2$

Khoảng cách lớn nhất giữa hai cốt đai là:

$$s_{\max} = \frac{\varphi_{b4} \cdot (1 + \varphi_f) \cdot R_{bt} \cdot b \cdot h_0^2}{Q}$$

Đối với bêtông nặng lấy $\varphi_{b4} = 1,5$

Khoảng cách cấu tạo giữa các cốt đai:

Khu vực gần gối tựa: $s_{ct} \leq \begin{cases} \frac{h}{2} & \text{khi h} \leq 45 \text{cm}; \ s_{ct} \leq \begin{cases} \frac{h}{3} & \text{khi h} > 45 \text{cm}; \\ 30 \text{cm} & 30 \text{cm} \end{cases}$ Khu vực giữa dầm: $s_{ct} \leq \begin{cases} \frac{3h}{4} & \\ 30 \text{cm} & \\ \end{cases}$ Khoảng cách đai thiết kế: $s_{tk} \leq \begin{cases} s_{tt} & \\ s_{max} & \\ s_{ct} & \\ \end{cases}$

Kiểm tra khả năng chịu ứng suất nén chính trên bụng dầm:

$$Q \leq 0, 3.\varphi_{b1}.\varphi_{w1}.R_{b}.b.h_{o}$$

Hệ số: $\varphi_{b1} = 1 - \beta R_b$

Hệ số xét đến ảnh hưởng của cốt đai:

$$\varphi_{w1} = 1 + 5\alpha.\mu_w < 1,3$$

Trong đó: $\alpha = \frac{E_s}{E_b}; \mu_w = \frac{A_{sw}}{b.s}$

 \Rightarrow Điều kiện được thỏa mãn hay không .

Kết luận: Đoạn dầm gần gối lấy bằng 1/4 nhịp khi dầm chịu tải trọng phân bố đều, lấy bằng khoảng cách từ gối đến lực tập trung dầm đầu tiên (nhưng không bé hơn 1/4 nhịp) khi dầm chịu lực tập trung. Chọn đai ϕ , số nhánh với khoảng cách s_{tk} trên đoạn gần gối tựa. Phần còn lại trong đoạn giữa dầm dùng đai ϕ , số nhánh với khoảng cách s_{ct}.

1.2.2. Tính toán cột, xà nghiêng với độ dốc lớn

Cho biết: (bxh, l, Ψ , M, N, R_b , R_s , R_{sc} , E_b , E_s , ξ_R)

Yêu cầu: tính toán cốt thép đối xứng $A_s = A'_s$ và chọn đai theo cấu tạo

a. Tinh cốt thép dọc

a1. Tính độ lệch tâm ban đầu e₀:

Ta có: $e_o = max(e_1; e_a)$ Độ lệch tâm do tĩnh học: $e_1 = \frac{M}{N}$ Độ lệch tâm ngẫu nhiên: $e_a \ge \begin{cases} \frac{l}{600} \\ \frac{h}{30} \end{cases}$

a2. Tính hệ số uốn dọc η:

$$\eta = \frac{1}{1 - \frac{N}{N_{th}}}$$

Trong đó: N_{th} : lực nén tới hạn

$$N_{th} = \frac{6, 4E_b}{l_o^2} \left(\frac{SI}{\varphi_l} + \alpha I_s\right)$$

 l_o : chiều dài tính toán của cấu kiện

 $l_o = 0,7l$: khung nhiều nhịp.

S: hệ số kể đến ảnh hưởng của độ lệch tâm ${\rm e_o}$

$$S = \frac{0.11}{0.1 + \frac{\delta_e}{\varphi_p}} + 0.1$$
$$\delta_e = max \left(\frac{e_0}{h}; \delta_{min}\right)$$
$$\delta_{min} = 0.5 - 0.01 \frac{l_0}{h} - 0.01 R_b; (R_b \text{ tính bằng MPa})$$

 φ_p : hệ số xét đến ảnh hưởng của cốt thép căng ứng lực trước, với bê tông cốt thép thường: $\varphi_p = 1$.

 φ_l : hệ số kể đến tính chất dài hạn của tải trọng:

$$\varphi_{l} = 1 + \frac{M_{dh} + N_{dh}.h/2}{M + N.h/2}$$

 M_{dh}, N_{dh} : momen và lực dọc do tải trọng dài hạn gây ra.

M, N: nội lực tính toán tiết diện (lấy giá trị tuyệt đối).

Nếu $M_{dh} \& M$ ngược dấu thì M_{dh} thêm dấu " - "

Nếu tính ra $\varphi_l < 1$ thì lấy $\varphi_l = 1$.

 E_b : môđun đàn hồi của bêtông

 E_s : môđun đàn hồi của cốt thép

$$\alpha = \frac{E_s}{E_b}$$

I : momen quán tính của tiết diện bê tông.

 I_s : momen quán tính của cốt thép.

Do ban đầu chưa biết A_s nên giả thiết trước hàm lượng cốt thép μ_t .

 $\Rightarrow I_s = \mu_t b h_0 (0, 5h-a)^2$

Nếu μ_t tính ra chênh lệch nhiều so với giả thiết thì giả thiết lại và tính toán lại.

a3. Tính độ lệch tâm tính toán:

$$e = \eta e_0 + \frac{h}{2} - a$$
; $e' = \eta e_0 - \frac{h}{2} + a'$

a4. Xác định trường hợp lệch tâm: $x = \frac{N}{R_b b}$.

TH1: Nếu $2a' \le x \le \xi_R h_0$ thì lệch tâm lớn

TH2: Nếu x < 2a' thì lệch tâm rất lớn

TH3: Nếu $x > \xi_R h_0$ thì lệch tâm bé

a5. Tính cốt thép dọc:

Trường hợp lệch tâm lớn: ($2a' \le x \le \xi_R h_0$)

$$\Rightarrow A_{s} = A_{s}' = \frac{N \cdot (e - h_{o} + 0.5x)}{R_{sc} \cdot (h_{o} - a')} \text{ với } e = \eta e_{o} + 0.5h - a$$

Trường hợp lệch tâm rất lớn: (x < 2a')

$$\Rightarrow A_{s} = A_{s}' = \frac{N.e'}{R_{s}.(h_{o} - a')} \text{ voi } e' = e - h_{o} + a' = \eta e_{o} - 0.5h + a'$$

Trường hợp lệch tâm bé: ($x > \xi_R h_0$)

Tính lại x:
$$x = \frac{\left[(1 - \xi_R) \gamma_a n + 2\xi_R (n\varepsilon - 0, 48) \right] h_o}{(1 - \xi_R) \gamma_a + 2(n\varepsilon - 0, 48)}$$
với $n = \frac{N}{R_b b h_o}, \ \varepsilon = \frac{e}{h_o}, \ \gamma_a = \frac{Z_a}{h_o}$

Nếu $x > h_o$ thì lấy $x = h_o$, nếu $x < \xi_R h_o$ thì lấy $x = \xi_R h_o$. Sau đó tính cốt

thép theo công thức: $A_s = A'_s = \frac{Ne - R_b bx(h_o - 0.5x)}{R_{sc}Z_a}$

Kiểm tra hàm lượng cốt thép μ_t :

$$\mu_{t} = \frac{A_{s} + A_{s}}{b.h_{o}} .100\% = \frac{2.A_{s}}{b.h_{o}} .100\%$$

 μ_t phải đảm bảo điều kiện : $2\mu_{min} \le \mu_t \le 6\%$.

Với
$$\mu_{min}$$
 = 0,05% khi $l_0/b \le 5$
= 0,1% khi $l_0/b \le 10$
= 0,2% khi $l_0/b \le 24$
= 0,25% khi $l_0/b \le 31$

- Khi $l_o/b > 31$ thì cột mất ổn định.

b. Chọn cốt đai theo cấu tạo

- Đường kính của cốt đai: $\phi \ge \begin{cases} \frac{d_1}{4} & (d_1 \text{ đường kính lớn nhất của cốt dọc}). \\ 5mm \end{cases}$

- Khoảng cách của cốt đại $s \le 15d_2$ và $\le 50cm$ (d_2 đường kính cốt dọc bé nhất).

- Khi μ % > 3% thì *s* \leq 10*d*₂ và *s* \leq 30*cm*.

- Khi $h \ge 50 cm$ thì cần có cốt dọc phụ. Đường kính cốt dọc phụ $\ge \phi 12$.

II. Ví dụ tính toán khung phẳng

1. Sơ đồ tính

- Cho khung phẳng như hình vẽ, tên các nút được kí hiệu từ 1 đến 53, tên các phần tử cột được kí hiệu từ 1 đến 40, tên các phần tử cột được kí hiệu từ 41 đến 79.

- Kích thước hệ cho trên hình vẽ:

2. Sơ đồ tải trọng

Tải trọng tác dụng vào khung được phân tích thành 5 trường hợp tải trọng bao gồm: tĩnh tải (TT), hoạt tải đứng 1(HT1), hoạt tải đứng 2 (HT2), gió trái (GT), gió phải (GP). Giá trị tải trọng đã được xác định trong bước xác định tải trọng và được thể hiện như sau:

3. Xác định nội lực bằng sap2000

3.1. Lập sơ đồ tính

- Chọn đơn vị Tonf, m, C

Tạo hệ kết cấu và lưới trục File→New model→Grid Only: Khai báo đường lưới theo phương X
= 8, Y = 1, Z = 9; Khoảng cách lưới X = 3.6, Z = 3.6→OK.

 Để lại một cửa sổ XZ trên màn hình và chọn biểu tượng XZ trên thanh công cụ

Điều chỉnh kích thước các ô lưới: kích chuột phải
 vào màn hình→ Edit Grid Data→Modify/Show
 system→ Chon mục Spacing và sử khoảng cách theo tri

system \rightarrow Chọn mục Spacing và sử khoảng cách theo trục đúng kích thước yêu cầu của hệ \rightarrow OK \rightarrow OK

					Units		Grid Lines
System	System Name GLOBAL			Tonf, m, C 💌		Quick Start	
X Grid Dal	ta						
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc.	Bubble Loc. 🔺	
1	A	0.8	Primary	Show	End		
2	В	3.6	Primary	Show	End		
3	С	7.2	Primary	Show	End		
4	D	3.6	Primary	Show	End		₽
5	E	3.6	Primary	Show	End		
6	F	0.8	Primary	Show	End		
7	G	6	Primary	Show	End		
8	Н	0	Primary	Show	End		
Y Grid Dal	ta				:		Display Grids as
	Grid ID	Spacing	Line Tune	Visibilitu	Bubble Loc	Bubble Loc	C. Ordinates & Spacing
1	1	0 Opacing	Primaru	Show	Start	Babble Loc	O ordinates to Spacing
2	•		rindiy	311044	Start		
3							Hide All Grid Lines
4							
5							J✓ Glue to Grid Lines
6							
7							Bubble Size 0.8125
8						-	
Z Grid Dal	ta						
	Grid ID	Spacing	Line Type	Visibilitu	Bubble Loc.		Reset to Default Lolor
1	Z1	4.8	Primary	Show	End		
2	Z2	3.6	Primary	Show	End		Heorder Urdinates
3	Z3	3.6	Primary	Show	End		
4	Z4	3.6	Primary	Show	End		
5	Z5	3.6	Primary	Show	End		
6	Z6	3.6	Primary	Show	End		
7	Z7	4	Primary	Show	End		Cancel
8	Z8	3.6	Primary	Show	End	-	

Coordinate System Name-	
GLOBAL	
Number of Grid Lines	
Number of and Lines	
× direction	8
Y direction	1
Z direction	9
Grid Spacing	
× direction	3.6
Y direction	3.6
Z direction	3.
First Grid Line Location	
× direction	0.
Y direction	0.
Z direction	0.
ОК	Cancel

Cartesian

1

Culindrical

Vẽ các phần tử thanh dùng biểu tượng 🔪 vẽ cột Restraints in Joint Local Directions trước sau đó vẽ dầm. Nhấn F7 để bỏ trục định vị và vào 🔽 Translation 1 🛛 🗖 Rotation about 1 menu view→show axes để bỏ hê truc toa đô. ▼ Translation 3 Rotation about 3 Gán liên kết ngàm cho các nút chân cột: chọn các Fast Restraints nút chân cột, vào Assign-joint-Restraint, chọn liên 金 ٠ kết ngàm. Màn hình sẽ thể hiện sơ đồ Khung như sau: ΰK Cancel 215 0364 2 Muốn thể hiện nút và tên phần tử thanh trong sơ đồ vào 🗹 chọn Label tại vị trí joint và frame Frames/Cables/Tendons View by Colors of Joints General ✓ Labels ✓ Labels Shrink Objects Objects ✓ Restraints Extrude View Sections C Sections Springs 🗌 Releases Fill Objects Materials C Color Printer Г Local Axes Г Local Axes Show Edges Г Invisible Г Frames Not in View Show Ref. Lines White Background, Black Objects C E Not in View Г 🔲 Show Bounding Boxes Selected Groups \mathbb{C} Tendons Not in View Areas Solids Links Miscellaneous Labels Labels L Labels Show Analysis Model (If Available) Properties Show Joints Only For Objects In View 🗖 Local Axes 🗖 Local Axes Local Axes □ Not in View □ Not in View □ Not in View

Chú ý nếu muốn đổi tên phần tử ta chọn các phần tử cột trước vào menu View→Change Labels, làm tương tự cho phần tử dầm

ÖΚ

- Choose A Named Item Type								
Item Type Element Labels - Frame								
Ist Names of Selected Elements Only								
-Auto Relabel Co	ontrol							
Prefix		First Relabel Order	Z 💌					
Next Number 1 Second Relabel Order Y								
Increment	1	Minimum Number Digits	0					

Cancel

Apply to All Windows

Nhập các thông số của tiết diện: tên, chiều cao, chiều rộng, vật liệu→**OK** thoát ra lại màn hình **Frame property**. Làm tương tự cho các tiết diện còn lại trong sơ đồ tính.

Materials	Click to:
4000Psi	Add New Material Quick
A615Gr60 A992Ev50	Add New Material
M300	Add Copy of Material
	Modify/Show Material
	Delete Material
	Show Advanced Properties
	οκ
1	Cancel
	Cancer
- General Data	
Material Name and Display Color	M300
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume	Tonf, m, C 💌
Mass per Unit Volume	549
Isotropic Property Data	
Modulus of Elasticity. E	3000000.
Poisson's Batio II	0.2
Coefficient of Thormal European	9 9005-06
coefficient of Thermal Expansion, A	1050000
Shear Modulus, Li	1250000.
- Other Properties for Concrete Materia	ls
Specified Concrete Compressive Stre	ength, f'c 2812.2785
Lightweight Concrete	
Shear Strength Reduction Facto	or Internet in the second s
	,
Switch To Advanced Proporty Disc	lau
ov	Cancel
UK	Cancer

Properties Find this property: D 3090 C3035 C3040 C3050 C3060 C4050 C4050 C4070 D3040 D3060 D3070	Click to: Import New Property Add New Property Add Copy of Property Modify/Show Property Delete Property	Section Name C3035 Section Notes Modify/Show Notes Properties Property Modifiers Section Properties Set Modifiers Dimensions 0.35 Depth (13) 0.3 Width (t2) 0.3
D3070 D3080 •	Cancel	Display Color

3.2.3. Các trường hợp tải trọng:

Trong hệ khung có 5 trường hợp tác dụng của tải trọng, trong phần xác định tải trọng hệ khung thì tĩnh tải đã xét đến trọng lượng bản thân nên ở bước này cần phải khai báo hệ số trọng lượng bản thân của trường hợp tĩnh tải bằng 0.

Define \rightarrow **Load Patterns** \rightarrow nhập tên trường hợp tĩnh tải (**TT**), sửa hệ số trọng lượng bản thân 1 thành 0 \rightarrow chọn **Modify Load Pattern**

Nhập tên các trường hợp tải trọng khác (HT1, HT2, GT, GP) chọn Add New Load **Pattern.** Kết quả như sau:

Chon **OK** thoát về màn hình chính. Tiếp theo ta thay đổi tên trong **Load Case** vì máy tính hiểu tên các trường hợp tải trọng lấy theo **Load Case** chứ không phải **Load Pattern** nên thay đổi cho phù hợp. Define - Load Case - chon Dead - Modify/ Show Load Case - sửa tên Dead→ TT.

3.3. Gán tiết diện và tải trọng Chon tiết diên trước sau đó gán

3.3.1. Gán tiết diện cho các thanh

Chon phần tử 1, 2 Assign→Frame→Section \rightarrow Frame \rightarrow Section \rightarrow chọn tiết diện C30x60 gán cho các thanh đó $\rightarrow \mathbf{OK}$

lai tương ứng với tiết diện trên sơ đồ tính. Kết quả c cùng như hình bên.

3.3.2. Gán tải trong vào hệ khung 3.3.2.1. Tĩnh tải

- Đặt tải trọng phân bố đều: chọn các phần tử thanh \rightarrow Assign \rightarrow Frame Loads \rightarrow **Distributed**. Sau đó xuất hiện hộp thoại bên:

- Đặt tải trọng tập trung: chọn nút Assign→Joints Load→Forces → nhập giá trị tải trọng thẳng đứng vào mục Force Global Z.

- Sau khi xác đinh xong tải trong thì kiểm tra lại bằng cách vào Show Loads→Assign →Frame

		D3040	D30	80		D3040		
	003035 003035	9985 10D3040	D30	90	C3060	95050 D3040D	3040	
n	C3035	C3050			C3050	C3035		
	D30	IOD3045	D3070		D3045	D3045D	3040	
	05040 C3040	8 8 10D3045	D3070	C3050	යි ව D3045	040 D3045		
	C3040	88 10D3045	D3070	C3050	යි ව D3045	07080 07080 D3045		
	03050 C3050	89 00 10D3045	D3070	C3060	20 02 D3045	02080 D3045		
	C3050	99 5 D3045	D3070	C3060	99 97 D3045	99080 D3045	D3060	
	C3080	02045 D3045	D3070	C4060	89 00 D3045	00000000000000000000000000000000000000	D3060	C3035
u	iối 🖁	4070		34060	4060	3060		3035

r Hi

3.3.2.2. Hoạt tải 1 và 2

- Cách đặt tải trọng tương tự trường hợp tĩnh tải nhưng có chú ý cần thay đổi mục Load Pattern Name

Load Pattern Name	•	Units Tonf, m, C		Load Pattern Name	•	Units Tonf, m, C
Loads		Coordinate System		- Loads		Coordinate System
Force Global X	0.	GLOBAL		Force Global X	0.	GLOBAL
Force Global Y	0.			Force Global Y	0.	
Force Global Z	0.	Options C Add to Existing Loads	\rightarrow	Force Global Z	0.	Options C Add to Existing Loads
Moment about Global X	0.	Replace Existing Loads		Moment about Global X	0.	Replace Existing Loads
Moment about Global Y	0.	O Delete Existing Loads		Moment about Global Y	0.	C Delete Existing Loads
Moment about Global Z	0.	Cancel		Moment about Global Z	0.	OK Cancel

3.3.2.3. Gió trái, Gió phải

Ngoài việc thay đổi mục **Load Pattern Name** từ $HT2 \rightarrow GT(GP)$, thì phương tải trọng phân bố cũng phải thay đổi và đối với các tải trọng không là phân bố đều thì khai báo trong **Trapezodial Loads:**

Load Pattern Name	Units Tonf, m, C				
Load Type and Direction	Options				
Forces C Moments	C Add to Existing Loads				
Coord Sys GLOBAL	 Replace Existing Loads 				
Direction Gravity 💌	C Delete Existing Loads				
Trapezoidal Loads	3. 4.	,			
Distance 0. 0.25	0.75 1.				
Load 0. 0.	0. 0.				
 Relative Distance from End-I 	C Absolute Distance from End-I				
Uniform Load					
Load 0.	OK Cancel				

Load Pattern Name	Units						
+ GT	Tonf, m, C						
Load Type and Direction	Options						
Forces C Moments	C Add to Existing Loads						
Coord Sys GLOBAL 💌	Replace Existing Loads						
Direction X	O Delete Existing Loads						
Trapezoidal Loads	3 4						
Distance 0 1.2	1.2 4.8						
Load 0. 0.	0.69 0.69						
C Relative Distance from End-I							
Uniform Load							
Load 0.	OK Cancel						

Kết quả các trường hợp tải trọng như sau:

Tĩnh tải

3.4. Tính toán và xuất nội lực

3.4.1. Thực hiện tính toán

- Khai báo kết cấu thuộc dạng khung phẳng: →Analyze→Set Analysis options→Chọn XZ Plane→OK

- Tính toán: → Analyze→Run Analysis hoặc bấm F5→Run Now

,	Case/Combo
3.4.2. Xem kết quả trên màn hình	Case/Combo Name TT 🗨
Xem kết quả nổi lực hoặc phản lực: \rightarrow Display \rightarrow	- Multivalued Options
Show Forces/Stresses—Joints (Frame/Cables)	C Envelope (Range)
Arial Earna (hra daa) Shaan 2.2 (hra a't) Moment 2.2 (mâman)	Conservation
Axiai Force (iuc doc), Shear 2-2 (iuc cat), Moment 5-5 (moment	CAxial Force C Torsion
Trên hình bên là trường hợp tính tài để xem các trường hợp khác	C Shear 2-2 C Moment 2-2
thay đối Case/Combo Name.	Soling
Luu ý: Do guy ước dấu Shear 2-2 trong Sap2000 khác	Auto
với quy định dấu lực cắt 0 tiêu chuẩn Việt Nam do vậy	C Scale Factor
tổ nam biểu đồ lực cát ở trá nhận Caola Fostan là ció trị ô	C Fill Diagram
de xem bieu do lực cat tả nhập Scale Factor là gia trị am.	Show Values on Diagram Cancel
	s <mark>ia</mark> u -auzr autos
	2 2

ф

Ь

ф

-B. JI

Ь

ф

Shear 2-2 (Scale Factor Âm)

ф

Ь

- 8, 27

Ь

Ь

Ь

Ь

ф

Moment 3-3 (Scale Factor Auto)

3.4.3. Xuất file tính toán sang Excel

- Để thuận lợi việc tổ hợp nội lực và tính toán cốt thép ta chỉ cần lấy nội lực của dầm tại 3 tiết diện (2 gối và giữa dầm) còn phần tử cột chỉ cần 2 tiết diện (chân và đầu cột).

Cách thực hiện như sau: Chọn các phần tử dầm→Assign→Frame

→Output Stations→Min Number Stations nhập 3, làm tương tự cho phần tử cột nhập 2. Tiến hành tính toán **run** lại cho kết cấu

- Xuất thành file Excel:→File→Export→Sap2000 MS Excel.... →OK, chọn địa chỉ save

	Load Patterns (Model Def.)	
P MODEL DEFINITION (0 of 52 tables selected)		Assign Frame Output Stations
🖶 🗖 System Data	Select Load Patterns	5 1
B- Property Definitions	5 of 5 Selected	
🖶 🗖 Load Pattern Definitions		
🗄 🗖 Other Definitions	Load Cases (Results)	O Max Station Spacing
🕮 🗖 Load Case Definitions	Select Load Cases	Min Number Stations
🖶 🗖 Bridge Data	5 of 16 Selected	
🖶 🗖 Connectivity Data		- Additional Output and Design Stations
🗄 🗖 Joint Assignments	Modify/Show Options	Additional output and Design Stations
🖶 🗖 Frame Assignments		Intersections With Other Elements
B- Options/Preferences Data	Set Output Selections	Concentrated Load Locations
🗄 🗖 Miscellaneous Data	- Options	(Including Bridge Lane Loading Points)
MALYSIS RESULTS (4 of 8 tables selected)		
🗄 🗆 Joint Output	Selection Only	
B Z Element Output	Open File After Export	OK Cancel
🗄 🗆 Structure Output		

Kết quả (sheet nội lực) như sau:

Fromo	Ctation	OutputCoop	CasaTupa	D	1/2	1/2	т	M2	M2	FrameElam	Elem Station
Taille	Station	Juipuicase	CaseType	F	VZ	VJ			MJ KN I I	TameLiem	Liemstation
Text		TEXL	Text	NN 4470 222407	0.45004005	NN 0	NIN-III	KIN-III	0.00000400	Text	m
1	0	11 TT	LinStatic	-14/6.33312/	-2.45291695	0	0	0	-2.000000409	1-Jan	0
1	4.8	11	LinStatic	-14/6.33312/	-2.45291895	0	0	0	8.90/1224/1	1-Jan	4.8
1	0	HIT	LinStatic	-1/4.8221/66	-1.13368986	0	0	0	-1.300650385	1-Jan	0
1	4.8	HI1	LinStatic	-1/4.8221/66	-1.13368986	0	0	0	4.141060941	1-Jan	4.8
1	0	HT2	LinStatic	-146.0180896	0.410907094	0	0	0	0.82697293	1-Jan	0
1	4.8	HT2	LinStatic	-146.0180896	0.410907094	0	0	0	-1.14538112	1-Jan	4.8
1	0	GT	LinStatic	300.4547749	61.31471136	0	0	0	179.3534449	1-Jan	0
1	4.8	GT	LinStatic	300.4547749	36.95499226	0	0	0	-71.10967521	1-Jan	4.8
1	0	GP	LinStatic	-301.4569201	-59.07898979	0	0	0	-177.057948	1-Jan	0
1	4.8	GP	LinStatic	-301.4569201	-40.72094062	0	0	0	73.47671454	1-Jan	4.8
2	0	Π	LinStatic	-1285.717251	-7.575440043	0	0	0	-12.1987981	1-Feb	0
2	3.6	Π	LinStatic	-1285.717251	-7.575440043	0	0	0	15.07278605	1-Feb	3.6
2	0	HT1	LinStatic	-128.957931	-1.260240062	0	0	0	-4.070487594	1-Feb	0
2	3.6	HT1	LinStatic	-128.957931	-1.260240062	0	0	0	0.466376629	1-Feb	3.6
2	0	HT2	LinStatic	-147.5185931	-1.431579811	0	0	0	-0.839948379	1-Feb	0
2	3.6	HT2	LinStatic	-147.5185931	-1.431579811	0	0	0	4.313738942	1-Feb	3.6
2	0	GT	LinStatic	230.2715473	38.147688	0	0	0	56.97170004	1-Feb	0
2	3.6	GT	LinStatic	230.2715473	24.37915112	0	0	0	-55.57661037	1-Feb	3.6
2	0	GP	LinStatic	-230.8523256	-36.31916118	0	0	0	-55.50363473	1-Feb	0
2	3.6	GP	LinStatic	-230.8523256	-26.08101838	0	0	0	56.81668848	1-Feb	3.6
3	0	Π	LinStatic	-1155.290813	-1.965666565	0	0	0	-6.998779315	1-Mar	0
3	3.6	π	LinStatic	-1155.290813	-1.965666565	0	0	0	7.76E-02	1-Mar	3.6
3	0	HT1	LinStatic	-128,2484474	-2.211485184	0	0	0	-2.618908838	1-Mar	0
3	3.6	HT1	LinStatic	-128.2484474	-2.211485184	0	0	0	5.342437824	1-Mar	3.6
3	0.0	HT2	LinStatic	-126 5366312	-0.847065641	0	0	0	-2 646197088	1-Mar	0.0
► ► Fle	ment Force	es - Frames 🖉	Element 10	int Forces - Fram	nes Ohierts	And Elemer	nts - Frame	ohie	cts And Elemen	ts - loints 4	

3.4.4. Sử dụng file tính toán Excel

Để thuận lợi trong quản lý tính toán ta chỉ xét sheet **Element Forces Frames,** các cột không cần thiết ta xóa đi và đặt tên lại là **NL Sap** ta được sheet như sau:

TABLE: EI	ement For	ces - Frames			
Frame	Station	OutputCase	Р	V2	M3
Text	m	Text	Tonf	Tonf	Tonf-m
1	0	Π	-150.5440794	-0.250128117	-0.292341261
1	4.8	Π	-150.5440794	-0.250128117	0.908273701
1	0	HT1	-17.82690042	-0.115604191	-0.132629426
1	4.8	HT1	-17.82690042	-0.115604191	0.422270689
1	0	HT2	-14.88970103	0.041900862	0.084327769
1	4.8	HT2	-14.88970103	0.041900862	-0.116796367
1	0	GT	30.6378599	6.252360399	18.28896119
1	4.8	GT	30.6378599	3.768360399	-7.251168724
1	0	GP	-30.74005026	-6.024380251	-18.05488565
1	4.8	GP	-30.74005026	-4.152380251	7.492539557
2	0	Π	-131.10667	-0.772479887	-1.243931195
2	3.6	Π	-131.10667	-0.772479887	1.5369964
2	0	HT1	-13.15004903	-0.12850872	-0.415074211
2	3.6	HT1	-13.15004903	-0.12850872	0.04755718
2	0	HT2	-15.0427098	-0.145980511	-0.085650896
2	3.6	HT2	-15.0427098	-0.145980511	0.439878945
2	0	GT	23.48116254	3.889981515	5.809496503
2	3.6	GT	23.48116254	2.485981515	-5.667236951
2	0	GP	-23.54038544	-3.703523675	-5.659795506
2	3.6	GP	-23.54038544	-2.659523675	5.793689723
NL-Sap 🦉	-				

	TABLE: E	lement Fo	rces - Frames	5			
	Frame	Station	OutputCase	CaseType	Р	V2	M3
	Text	m	Text	Text	KN	KN	KN-m
10TT	1	0.0	TT	LinStatic	-1476.33	-2.45	-2.87
14.8TT	1	4.8	TT	LinStatic	-1476.33	-2.45	8.91
10HT1	1	0.0	HT1	LinStatic	-174.82	-1.13	-1.30
14.8HT1	1	4.8	HT1	LinStatic	-174.82	-1.13	4.14
10HT2	1	0.0	HT2	LinStatic	-146.02	0.41	0.83
14.8HT2	1	4.8	HT2	LinStatic	-146.02	0.41	-1.15
10GT	1	0.0	GT	LinStatic	300.45	61.31	179.35
14.8GT	1	4.8	GT	LinStatic	300.45	36.95	-71.11
10GP	1	0.0	GP	LinStatic	-301.46	-59.08	-177.06
14.8GP	1	4.8	GP	LinStatic	-301.46	-40.72	73.48
20TT	2	0.0	TT	LinStatic	-1285.72	-7.58	-12.20
23.6TT	2	3.6	TT	LinStatic	-1285.72	-7.58	15.07
20HT1	2	0.0	HT1	LinStatic	-128.96	-1.26	-4.07
23.6HT1	2	3.6	HT1	LinStatic	-128.96	-1.26	0.47
20HT2	2	0.0	HT2	LinStatic	-147.52	-1.43	-0.84
23.6HT2	2	3.6	HT2	LinStatic	-147.52	-1.43	4.31
20GT	2	0.0	GT	LinStatic	230.27	38.15	56.97
23.6GT	2	3.6	GT	LinStatic	230.27	24.38	-55.58
20GP	2	0.0	GP	LinStatic	-230.85	-36.32	-55.50
23.6GP	2	3.6	GP	LinStatic	-230.85	-26.08	56.82
30TT	3	0.0	TT	LinStatic	-1155.29	-1.97	-7.00
33.6TT	3	3.6	TT	LinStatic	-1155.29	-1.97	0.08
30HT1	3	0.0	HT1	LinStatic	-128.25	-2.21	-2.62

Để dễ dàng dò tìm nội lực trong bảng tính ta dùng hàm "**And**" để lọc ra tên phần tử, tiết diện và trường hợp tải trọng. Ta được bảng như sau:

a. Tính toán cốt thép dọc cho dầm:

B1: Dùng hàm "**Vlookup**" để lọc nội lực ứng với các trường hợp tải trọng, thực hiện tính toán **11** tổ hợp lấy ra các giá trị M_{min} , M_{max} ứng với các tiết diện tương ứng của các phần tử dầm (từ phần tử **41** đến phần tử **79**). Bảng tính nội lực tính toán dầm:

Phần	Tiết	Tr	rờng hợp	tải trọng (đơn vị KN.	m)				Giá	trị mô men	của các tổ	hợp (đơn vị	KN.m)					Tổ h	òb
từ	diện	TT	HT1	HT2	GT	GP	COMB 1	COMB 2	COMB 3	COMB 4	COMB 5	COMB 6	COMB 7	COMB 8	COMB 9	COMB 10	COMB 11	M _{min}	Mmax	M _{ttoda}
41	0	-21.11	-8.21	0.31	128.08	-128.98	-29.32	-20.80	106.98	-150.09	-29.01	86.78	-144.58	94.44	-136.91	87.05	-144.30	-150.09	106.98	-150.09/+106.98
41	1.8	10.30	4.66	-2.40	1.75	-1.89	14.97	7.91	12.06	8.41	12.57	16.08	12.80	9.72	6.45	13.92	10.64	6.45	16.08	16.08
41	3.6	-36.45	-3.91	-5.10	-124.58	125.20	-40.36	-41.55	-161.03	88.75	-45.45	-152.09	72.71	-153.16	71.64	-156.67	68.12	-161.03	88.75	-161.03/+88.75
42	0	-184.42	-0.53	-71.28	232.45	-233.30	-184.95	-255.70	48.03	-417.72	-256.23	24.31	-394.87	-39.37	-458.55	-39.84	-459.02	-459.02	48.03	-459.02/+48.03
42	3.6	171.57	-2.01	62.36	7.92	-7.87	169.56	233.93	179.49	163.70	231.92	176.89	162.67	234.83	220.61	233.02	218.80	162.67	234.83	234.83
42	7.2	-179.15	-3.50	-62.91	-216.60	217.56	-182.66	-242.07	-395.76	38.41	-245.57	-377.25	13.50	-430.72	-39.97	-433.87	-43.12	-433.87	38.41	-433.87/+38.41
43	0	-37.77	-1.53	-7.63	111.67	-112.28	-39.31	-45.41	73.89	-150.05	-46.94	61.35	-140.20	55.86	-145.69	54.48	-147.07	-150.05	73.89	-150.05/+73.89
43	1.8	4.36	4.88	-3.40	-3.74	3.77	9.24	0.96	0.62	8.12	5.84	5.39	12.14	-2.06	4.69	2.33	9.08	-2.06	12.14	-2.06/+12.14
43	3.6	-14.19	-10.31	0.83	-119.14	119.81	-24.50	-13.37	-133.33	105.61	-23.67	-130.70	84.35	-120.67	94.38	-129.95	85.10	-133.33	105.61	-133.33/+105.61
44	0	-18.46	2.53	-3.60	114.65	-115.29	-15.93	-22.06	96.19	-133.75	-19.53	87.01	-119.95	81.49	-125.46	83.77	-123.18	-133.75	96.19	-133.75/+96.19
44	1.8	11.21	-3.56	5.03	3.36	-3.41	7.65	16.24	14.57	7.80	12.68	11.03	4.94	18.76	12.67	15.56	9.47	4.94	18.76	18.76
44	3.6	-34.75	-9.64	-9.53	-107.92	108.48	-44.39	-44.28	-142.67	73.73	-53.92	-140.56	54.21	-140.46	54.31	-149.14	45.63	-149.14	73.73	-149.14/+73.73
45	0	-66.10	-49.22	-0.80	127.99	-128.50	-115.32	-66.90	61.89	-194.60	-116.13	4.79	-226.05	48.37	-182.48	4.07	-226.78	-226.78	61.89	-226.78/+61.89
45	3	58.01	38.78	-1.20	15.45	-15.56	96.78	56.81	73.46	42.45	95.59	106.82	78.90	70.84	42.93	105.74	77.83	42.45	106.82	106.82
45	6	-51.77	-22.12	-1.59	-97.08	97.38	-73.89	-53.36	-148.85	45.61	-75.48	-159.05	15.97	-140.58	34.44	-160.48	14.54	-160.48	45.61	-160.48/+45.61
46	0	-22.07	-3.09	-6.96	115.12	-115.55	-25.16	-29.03	93.05	-137.62	-32.12	78.76	-128.84	75.27	-132.33	72.49	-135.11	-137.62	93.05	-137.62/+93.05
46	1.8	9.24	-1.81	2.86	1.83	-1.83	7.43	12.10	11.07	7.41	10.30	9.26	5.97	13.46	10.17	11.83	8.55	5.97	13.46	13.46
46	3.6	-24.27	-0.53	4.11	-111.47	111.89	-24.80	-20.16	-135.73	87.63	-20.69	-125.07	75.96	-120.89	80.14	-121.37	79.66	-135.73	87.63	-135.73/+87.63
47	0	-178.36	-43.34	-4.36	220.74	-221.59	-221.70	-182.72	42.37	-399.95	-226.06	-18.70	-416.80	16.38	-381.72	-22.63	-420.72	-420.72	42.37	-420.72/+42.37
47	3.6	164.01	46.68	-3.97	5.26	-5.29	210.69	160.04	169.27	158.72	206.72	210.76	201.26	165.18	155.68	207.19	197.69	155.68	210.76	210.76
47	7.2	-184.83	-44.10	-3.58	-210.21	211.01	-228.93	-188.40	-395.04	26.19	-232.50	-413.71	-34.61	-377.24	1.87	-416.93	-37.83	-416.93	26.19	-416.93/+26.19
48	0	-34.80	-1.43	-0.47	107.97	-108.36	-36.22	-35.27	73.17	-143.16	-36.69	61.09	-133.60	61.95	-132.74	60.67	-134.03	-143.16	73.17	-143.16/+73.17
4 1 1	ТН	M Dầm	Thép D	âm / NI -	San / Th	I O Dầm	/ Then D	ai-Dam	TH M.N.O	Côt / The	én Côt / S	D / 🛛 🕯 🗍								

BẢNG TỔ HƠP MOMENT DẦM KHUNG

B2: Nhập các thông số về tiết diện, tên phần tử và vị trí vào bảng tính cốt thép dầm (ô màu đỏ), nội lực được liên kết từ sheet **TH M Dầm.** Ta được bảng tính thép dọc dầm như sau:

			1	BÅN	IG]	FÍN	нт	ΉÉ	PI)ọc I	DÂM	KHUNG									
	Cấp b	ền BT:	B20 💌	R _b =	11.5	C.thé	p: CII,	A-II	•	R _s =R _{sc} =	280	$\xi_{\rm R}$ = 0.623 $\alpha_{\rm R}$ = 0.429	μ _{min} =	0.10%							
																	Bång	chọn	thép		
Tên	Tiết	Cốt	M _{ttoán}	b	h	a	h _o			A ₅ ^{TT}	μ ^{ττ}	Char di la	A _s ^{ch}	μ ^{BT}	Ø =	14	16	18	20	22	25
p.tử	diện	thép	(kN.m)	(cm)	(cm)	(cm)	(cm)	α _m	5	(cm ²)	(%)	Cnộn thếp	(cm ²)	(%)	fa=	1.54	2.01	2.54	3.14	3.80	4.91
	GT	Trên	-150.09	30		4	41	0.26	0.85	15.43	1.25%	2022 + 2025	17.42	1.42%	Trên					2	2
1		Dưới	106.98	150	45	4	41	0.04	0.98	9.50	0.77%	2025	9.82	0.80%	Dưới						2
1	N	Trên	0.00	30		4	41	0.00	c.tạo	1.23	0.10%	2025	9.82	0.80%	Trên						2
41		Dưới	16.08	150	45	4	41	0.01	1.00	1.40	0.11%	2025	9.82	0.80%	Dưới						2
	GP	Trên	-161.03	30		4	41	0.28	0.83	16.83	1.37%	6Ø25	29.45	2.39%	Trên						6
		Dưới	88.75	150	45	4	41	0.03	0.98	7.85	0.64%	2025	9.82	0.80%	Dưới					[2
	GT	Trên	-459.02	30		4	66	0.31	0.81	30.59	1.55%	6025	29.45	Fa <tt< th=""><th>Trên</th><th></th><th></th><th></th><th></th><th></th><th>6</th></tt<>	Trên						6
		Dưới	48.03	210	70	4	66	0.00	1.00	2.61	0.13%	2025	9.82	0.50%	Dưới						2
	N	Trên	0.00	30		4	66	0.00	c.tao	1.98	0.10%	2025	9.82	0.50%	Trên						2
42		Dưới	234.83	210	70	4	66	0.02	0.99	12.85	0.65%	1022 + 2025	13.62	0.69%	Dưới					1	2
	GP	Trên	-433.87	30		4	66	0.29	0.83	28.46	1.44%	6025	29.45	1.49%	Trên						6
		Dưới	38.41	210	- 70	4	66	0.00	1.00	2.08	0.11%	2025	9.82	0.50%	Dưới						2
	GT	Trên	-150.05	30		4	41	0.26	0.85	15.43	1.25%	6025	29.45	2.39%	Trên						6
		Dưới	73.89	150	45	4	41	0.03	0.99	6.52	0.53%	2025	9.82	0.80%	Durói						2
	N	Trên	-2.06	30		4	41	0.00	1.00	1.23	0.10%	2025	9.82	0.80%	Trên						2
43		Durái	12.14	150	45		41	0.00	1.00	1.22	0.10%	2025	0.92	0.800%	Drefi	+					
▶ ▶	TH	1 Dam	Thép Dầi	n Th	l I Q Dầi	n / T	hep Da	ai-Dam		H M,N Cột	Thép	Cột / SD / 📜 🗸 🔤	9.02	0.8070		I	I				

b. Tính toán cốt thép đai cho dầm:thực hiện tương tự như tính cốt thép dọc cho dầm, ta được kết quả như sau:

BẢNG TỔ HỢP LỰC CẮT DẦM KHUNG

Phần	Tiết	Tr	ường hợp	tải trọng	(đơn vị K	N)				G	iá trị lực c	ắt của các tổ	hợp (đơn v	KN)					Tổ hợp	
tử	diện	TT	HT1	HT2	GT	GP	COMB 1	COMB 2	COMB 3	COMB 4	COMB 5	COMB 6	COMB 7	COMB 8	COMB 9	COMB 10	COMB 11	Qmin	Qmax	Q _{max}
41	0	-39.16	-13.11	1.50	70.18	-70.60	-52.27	-11.61	31.02	-109.77	-50.77	12.20	-114.51	25.35	-101.36	13.55	-113.15	-114.51	31.02	114.51
41	1.8	4.26	-1.19	1.50	70.18	-70.60	3.07	0.31	74.45	-66.34	4.57	66.35	-60.36	68.78	-57.93	67.70	-59.01	-66.34	74.45	74.45
41	3.6	47.69	10.72	1.50	70.18	-70.60	58.41	12.22	117.87	-22.92	59.91	120.50	-6.21	112.20	-14.51	121.85	-4.86	-22.92	121.85	121.85
42	0	-137.37	0.41	-56.16	62.37	-62.62	-136.95	-55.75	-75.00	-199.99	-193.12	-80.86	-193.35	-131.78	-244.27	-131.41	-243.90	-244.27	-75.00	244.27
42	3.6	-60.40	0.41	-18.09	62.37	-62.62	-59.99	-17.68	1.96	-123.02	-78.08	-3.90	-116.39	-20.55	-133.04	-20.18	-132.67	-133.04	1.96	133.04
42	7.2	134.49	0.41	56.23	62.37	-62.62	134.91	56.64	196.86	71.87	191.13	191.00	78.51	241.23	128.74	241.60	129.11	71.87	241.60	241.60
43	0	-40.26	-9.57	-2.35	64.11	-64.47	-49.83	-11.92	23.85	-104.73	-52.18	8.83	-106.90	15.32	-100.40	6.71	-109.01	-109.01	23.85	109.01
43	1.8	-6.55	2.44	-2.35	64.11	-64.47	-4.11	0.09	57.56	-71.02	-6.46	53.35	-62.38	49.04	-66.69	51.23	-64.49	-71.02	57.56	71.02
43	3.6	27.17	14.44	-2.35	64.11	-64.47	41.61	12.09	91.28	-37.30	39.26	97.86	-17.86	82.75	-32.97	95.75	-19.97	-37.30	97.86	97.86
44	0	-37.49	3.38	-11.24	61.83	-62.16	-34.11	-7.86	24.34	-99.65	-45.34	21.20	-90.39	8.04	-103.55	11.09	-100.50	-103.55	24.34	103.55
44	1.8	4.52	3.38	1.65	61.83	-62.16	7.91	5.03	66.35	-57.64	9.55	63.21	-48.38	61.65	-49.94	64.70	-46.89	-57.64	66.35	66.35
44	3.6	46.54	3.38	14.53	61.83	-62.16	49.92	17.92	108.36	-15.62	64.45	105.22	-6.36	115.26	3.67	118.30	6.72	-15.62	118.30	118.30
45	0	-80.35	-54.15	0.13	37.51	-37.65	-134.50	-54.02	-42.84	-118.00	-134.37	-95.32	-162.97	-46.47	-114.12	-95.21	-162.85	-162.97	-42.84	162.97
45	3	-2.39	-4.52	0.13	37.51	-37.65	-6.91	-4.39	35.12	-40.04	-6.77	27.31	-40.34	31.49	-36.15	27.42	-40.22	-40.34	35.12	40.34
45	6	75.57	45.11	0.13	37.51	-37.65	120.69	45.25	113.09	37.93	120.82	149.94	82.29	109.45	41.81	150.06	82.41	37.93	150.06	150.06
46	0	-35.40	-0.71	-7.84	62.94	-63.18	-36.11	-8.55	27.54	-98.58	-43.95	20.61	-92.90	14.19	-99.32	13.55	-99.96	-99.96	27.54	99.96
46	1.8	0.61	-0.71	-3.08	62.94	-63.18	-0.10	-3.78	63.55	-62.57	-3.17	56.62	-56.89	54.49	-59.02	53.85	-59.66	-62.57	63.55	63.55
46	3.6	36.62	-0.71	1.69	62.94	-63.18	35.91	0.98	99.56	-26.56	37.60	92.63	-20.88	94.79	-18.72	94.15	-19.36	-26.56	99.56	99.56
47	0	-133.23	-29.77	-0.11	59.85	-60.08	-163.00	-29.88	-73.38	-193.32	-163.11	-106.16	-214.10	-79.46	-187.41	-106.26	-214.20	-214.20	-73.38	214.20
47	3.6	-56.98	-20.24	-0.11	59.85	-60.08	-77.21	-20.35	2.88	-117.06	-77.32	-21.32	-129.27	-3.21	-111.15	-21.42	-129.36	-129.36	2.88	129.36
47	7.2	126.78	37.84	-0.11	59.85	-60.08	164.62	37.73	186.64	66.70	164.51	214.71	106.76	180.55	72.61	214.61	106.66	66.70	214.71	214.71
48		-39.48	0.83	-9.48	61.23	-61.45	-38.65	-8.64	21.75 ôt Thến	-100.93	-48.13	16.38	-94.04	7.10	-103.31	7.85	-102.57	-103.31	21.75	103.31

BẢNG TÍNH THÉP ĐẠI DẦM KHUNG

Dhàn tải	Tiết	Loại t.d	$ Q _{max}$	b	h	a	h _o	V	Số	Φ	s _{tt}	s _{max}	s _{et}	s _{tk}	Char	d. (
Phan tu	diện	(gối-nhịp)	(kG)	(cm)	(cm)	(cm)	(cm)	K.ua	nhánh	(mm)	(cm)	(cm)	(cm)	(mm)	Cnọr	mep
41	0	G	11,451	30	45	4.0	41	T.T	2	8	48.7	59.5	15.0	150	Φ8	150
41	1.8	N	7,445	30	45	4.0	41	T.T	2	8	115.3	91.4	33.8	330	Φ8	200
41	3.6	G	12,185	30	45	4.0	41	T.T	2	8	43.1	55.9	15.0	150	Φ8	150
42	0	G	24,427	30	70	4.0	66	T.T	2	8	27.8	72.2	23.3	230	Φ8	150
42	3.6	N	13,304	30	70	4.0	66	T.T	2	8	93.6	132.6	50.0	500	Φ8	200
42	7.2	G	24,160	30	70	4.0	66	T.T	2	8	28.4	73.0	23.3	230	Φ8	150
43	0	G	10,901	30	45	4.0	41	T.T	2	8	53.8	62.5	15.0	150	Φ8	150
43	1.8	N	7,102	30	45	4.0	41	T.T	2	8	126.7	95.9	33.8	330	Φ8	200
43	3.6	G	9,786	30	45	4.0	41	T.T	2	8	66.7	69.6	15.0	150	Φ8	150
44	0	G	10,355	30	45	4.0	41	T.T	2	8	59.6	65.7	15.0	150	Φ8	150
44	1.8	N	6,635	30	45	4.0	41	C.T	2	8	145.2	C.T	33.8	330	Φ8	200
44	3.6	G	11,830	30	45	4.0	41	T.T	2	8	45.7	57.5	15.0	150	Φ8	150
► N ZT	H M Dầm	/ Thép Dầm /	∕TH Q Dần	n Thep	Dai-Da	 m / тн	l M,N Cộ	t / Th	ép Cột 🏑	∕sd <u>∕</u> ₹	 ⊋∕ []∢[1	1			1

c. Tính cốt thép dọc cho cột

Phần	Tiết		Momen	nt (đơn vị	KN.m)			Lực d	ọc (đơn v	į KN)	
tử	diện	TT	HT1	HT2	GT	GP	TT	HT1	HT2	GT	GP
1	0	-2.87	-1.30	0.83	179.35	-177.06	-1,476.33	-174.82	-146.02	300.45	-301.46
1	4.8	8.91	4.14	-1.15	-71.11	73.48	-1,476.33	-174.82	-146.02	300.45	-301.46
2	0	-12.20	-4.07	-0.84	56.97	-55.50	-1,285.72	-128.96	-147.52	230.27	-230.85
2	3.6	15.07	0.47	4.31	-55.58	56.82	-1,285.72	-128.96	-147.52	230.27	-230.85
3	0	-7.00	-2.62	-2. 6 5	59.54	-58.73	-1,155.29	-128.25	-126.54	167.33	-167.67
3	3.6	0.08	5.34	0.40	-52.80	54.55	-1,155.29	-128.25	-126.54	167.33	-167.67
4	0	2.73	-4.61	-2.05	52.11	-50.15	-938.63	-81.06	-126.82	110.61	-110.99
4	3.6	-0.01	2.45	5.49	-43.04	45. 6 4	-938.63	-81.06	-126.82	110.61	-110.99
5	0	0.93	-3.29	-2.86	41.70	-39.21	-720.68	- 79.6 5	-80.35	64.15	-64.48
5	3.6	-0.85	6.74	1.01	-28.15	30.56	-720.68	- 79.6 5	-80.35	64.15	-64.48
6	0	-5.70	-4.77	-2.66	31.89	-29.50	-503.82	-30.35	-80.46	30.78	-31.11
6	3.6	12.61	1.96	5.58	-13.95	16.95	-503.82	-30.35	-80.46	30.78	-31.11
7	0	-5.03	1.29	-4.25	34.26	-30.47	-263.03	-34.78	-7.86	4.38	-5.03
7	4.4	1.82	1.10	1.73	-6.83	10.15	-263.03	-34.78	-7.86	4.38	-5.03
8	0	-4.84	-7.22	-0.32	5.20	-2.92	-73.67	-2.03	-10.33	-1.53	1.29
8	3.6	9 .55	5.19	4.09	2.03	-1.40	-73.67	-2.03	-10.33	-1.53	1.29
9	0	-24.22	4.83	-14.62	367.16	-368.73	-2,868.70	-480.77	-438.79	3.02	-2.76
	IL-Sap /	TH M Dầm	n / Thép (Dâm / TH	Q Dầm /	Thep Dai-D	am TH	M,N Côt	Thép Côt		•

B1: Dùng hàm dò tìm "Vlookup" để chuyển nội lực từ sheet NL-Sap sang sheet TH M,N Cột (chia mômen và lực dọc thành các cột tương ưng như bảng sau):

B2: Tiến hành thực hiện 11 tổ hợp nội lực được bảng tính sau:

Phần					Mo	ment											Lực	dọc				
tử	COMB 1	COMB 2	COMB 3	COMB 4	COMB 5	COMB 6	COMB 7	COMB 8	COMB 9	COMB 10	COMB 11	COMB 0	COMB 1	COMB 2	COMB 3	COMB 4	COMB 5	COMB 6	COMB 7	COMB 8	COMB 9	COMB 10
1	-4.17	-2.04	-3.34	176.49	-179.92	157.38	-163.39	159.30	-161.47	158.12	-162.65	-1,476.33	-1,651.16	-1,622.35	-1,797.17	-1,175.88	-1,777.79	-1,363.26	-1,904.98	-1,337.34	-1,879.06	-1,494.68
1	13.05	7.76	11.90	-62.20	82.38	-51.36	78.76	-56.12	74.01	-52.40	77.73	-1,476.33	-1,651.16	-1,622.35	-1,797.17	-1,175.88	-1,777.79	-1,363.26	-1,904.98	-1,337.34	-1,879.06	-1,494.68
2	-16.27	-13.04	-17.11	44.77	-67.70	35.41	-65.82	38.32	-62.91	34.66	-66.57	-1,285.72	-1,414.68	-1,433.24	-1,562.19	-1,055.45	-1,516.57	-1,194.53	-1,609.55	-1,211.24	-1,626.25	-1,327.30
2	15.54	19.39	19.85	-40.50	71.89	-34.53	66.63	-31.06	70.09	-30.64	70.51	-1,285.72	-1,414.68	-1,433.24	-1,562.19	-1,055.45	-1,516.57	-1,194.53	-1,609.55	-1,211.24	-1,626.25	-1,327.30
3	-9.62	-9.64	-12.26	52.54	-65.73	44.23	-62.22	44.21	-62.24	41.85	-64.60	-1,155.29	-1,283.54	-1,281.83	-1,410.08	-987.96	-1,322.96	-1,120.12	-1,421.62	-1,118.58	-1,420.08	-1,234.00
3	5.42	0.48	5.82	-52.72	54.63	-42.64	53.98	-47.08	49.53	-42.27	54.34	-1,155.29	-1,283.54	-1,281.83	-1,410.08	-987.96	-1,322.96	-1,120.12	-1,421.62	-1,118.58	-1,420.08	-1,234.00
4	-1.89	0.68	-3.93	54.83	-47.42	45.47	-46.56	47.78	-44.25	43.63	-48.40	-938.63	-1,019.69	-1,065.44	-1,146.51	-828.01	-1,049.62	-912.03	-1,111.47	-953.21	-1,152.65	-1,026.17
4	2.44	5.47	7.92	-43.06	45.62	-36.55	43.26	-33.81	46.00	-31.61	48.20	-938.63	-1,019.69	-1,065.44	-1,146.51	-828.01	-1,049.62	-912.03	-1,111.47	-953.21	-1,152.65	-1,026.17
5	-2.36	-1.93	-5.22	42.63	-38.28	35.49	-37.32	35.88	-36.93	32.92	-39.90	-720.68	-800.32	-801.03	-880.67	-656.53	-785.16	-734.63	-850.39	-735.26	-851.03	-806.94
5	5.89	0.16	6.91	-29.00	29.71	-20.12	32.72	-25.27	27.56	-19.21	33.63	-720.68	-800.32	-801.03	-880.67	-656.53	-785.16	-734.63	-850.39	-735.26	-851.03	-806.94
6	-10.47	-8.35	-13.13	26.19	-35.20	18.71	-36.54	20.61	-34.64	16.32	-38.93	-503.82	-534.17	-584.28	-614.63	-473.04	-534.93	-503.44	-559.14	-548.53	-604.23	-575.85
6	14.57	18.19	20.15	-1.34	29.56	1.82	29.63	5.08	32.88	6.84	34.65	-503.82	-534.17	-584.28	-614.63	-473.04	-534.93	-503.44	-559.14	-548.53	-604.23	-575.85
7	-3.75	-9.28	-7.99	29.22	-35.50	26.96	-31.30	21.98	-36.28	23.14	-35.12	-263.03	-297.81	-270.89	-305.67	-258.65	-268.06	-290.39	-298.86	-266.17	-274.64	-297.47
7	2.92	3.56	4.66	-5.00	11.98	-3.33	11.95	-2.76	12.52	-1.77	13.51	-263.03	-297.81	-270.89	-305.67	-258.65	-268.06	-290.39	-298.86	-266.17	-274.64	-297.47
8	-12.06	-5.16	-12.38	0.35	-7.77	-6.66	-13.97	-0.45	-7.76	-6.95	-14.26	-73.67	-75.70	-84.00	-86.04	-75.20	-72.38	-76.87	-74.34	-84.34	-81.81	-86.17
8	14.74	13.64	18.83	11.58	8.15	16.05	12.96	15.06	11.97	19.73	16.64	-73.67	-75.70	-84.00	-86.04	-75.20	-72.38	-76.87	-74.34	-84.34	-81.81	-86.17
9	-19.39	-38.84	-34.01	342.94	-392.95	310.57	-351.73	293.07	-369.23	297.42	-364.89	-2,868.70	-3,349.47	-3,307.49	-3,788.26	-2,865.68	-2,871.46	-3,298.68	-3,303.88	-3,260.89	-3,266.09	-3,693.59
9	50.50	89.48	82.47	-140.08	256.15	-126.62	229.98	-91.54	265.07	-97.85	258.76	-2,868.70	-3,349.47	-3,307.49	-3,788.26	-2,865.68	-2,871.46	-3,298.68	-3,303.88	-3,260.89	-3,266.09	-3,693.59
10	-94.09	-124.68	-128.30	68.98	-250.32	49.78	-237.59	22.25	-265.12	18.99	-268.38	-2,518.31	-2,956.02	-2,859.32	-3,297.03	-2,507.47	-2,529.05	-2,902.50	-2,921.92	-2,815.47	-2,834.89	-3,209.41
10	109.98	88.03	113.10	-81.56	253.76	-42.35	259.44	-62.10	239.69	-39.54	262.25	-2,518.31	-2,956.02	-2,859.32	-3,297.03	-2,507.47	-2,529.05	-2,902.50	-2,921.92	-2,815.47	-2,834.89	-3,209.41
11	-86.92	-74.53	-92.27	96.55	-233.82	64.01	-233.32	75.16	-222.17	59.20	-238.13	-2,251.57	-2,647.07	-2,577.64	-2,973.15	-2,237.65	-2,265.41	-2,595.00	-2,619.98	-2,532.50	-2,557.49	-2,888.46
11	84.11	110.46	112.04	-85.55	251.66	-67.31	236.17	-43.60	259.89	-42.17	261.32	-2,251.57	-2,647.07	-2,577.64	-2,973.15	-2,237.65	-2,265.41	-2,595.00	-2,619.98	-2,532.50	-2,557.49	-2,888.46
12	-106.49	-127.41	-134.96	35.96	-233.48	15.67	-226.83	-3.16	-245.65	-9.96	-252.45	-1,914.48	-2,278.70	-2,162.10	-2,526.32	-1,899.34	-1,929.35	-2,228.65	-2,255.66	-2,123.72	-2,150.72	-2,451.52
12	135.14	106.09	139.88	-45.74	248.50	-0.63	264.19	-26.77	238.05	3.64	268.46	-1,914.48	-2,278.70	-2,162.10	-2,526.32	-1,899.34	-1,929.35	-2,228.65	-2,255.66	-2,123.72	-2,150.72	-2,451.52
< >)	NL-Sar	о / ТН М	Dầm / 1	Thép Dầm		Dâm / T	hep Dai-D	am TH	M.N Côt	Thép C	ôt / SD /	14										

B3: Vì tính toán cột cần tính tại mỗi tiết diện ứng với 3 cặp nội lực tương ứng: $(M_{max}, N_{tu}); (M_{min}, N_{tu}); (M_{tu}, N_{max})$. Dùng hàm "**Index**" kết hợp với hàm "**Match**" sẽ tìm được các cặp tương ứng với mỗi tiết diện như sau:

B4: Sau khi xác định các cặp nội lực thì ta dùng sheet **thép cột** để tính toán cốt thép cột. Trong sheet **thép cột** chúng cần nhập thông số kích thước tiết diện **bxh**, giả thiết **a**, giả thiết hòm lựcng cốt thép **u**

giả thiết **a**, giả thiết hàm lượng cốt thép μ_{gt} . Bảng xác định các giá trị chuẩn bị số liệu tính toán:

	Cấp	BT	B20	 R_b = 	11.5	E _b =	27,00	0	Cốt ť	hép:	CII, A	II 🔻	•]								
Phần	Tiết	Chiều	М	Ν	M _{dh}	N _{dh}	10	b	h	a	ho	eo	μ _{gt}	δe	S	φį	Ι	I _s	Nth	η	e
từ	diện	dài	(kN.m)	(kN)	(kN.m)	(kN)	(m)	(cm)	(cm)	(cm)	(cm)	(cm)	(%)				(m ⁴)	(m ⁴)	(kN)		(cm)
			176.5	-1175.9								15.01	0.93%	0.329	0.356	1.83		1.11E-04	29,313	1.04	42.14
	С		-179.9	-1777.8	-2.87	-1476.3						10.12	1.10%	0.329	0.36	1.62		1.31E-04	33,720	1.06	37.18
1		4.0	-162.6	-2036.4			2.26	20	60		57	7.99	0.83%	0.329	0.36	1.58	5 400 02	9.86E-05	30,432	1.07	35.06
1		4.0	82.4	-1777.8			5.50	30	00	4	57	4.63	0.78%	0.329	0.36	1.73	3.40E-03	9.34E-05	28,111	1.07	31.45
	Ð		-62.2	-1175.9	8.91	-1476.3						5.29	1.29%	0.329	0.36	2.00		1.53E-04	32,972	1.04	31.99
			77.7	-2036.4								3.82	0.55%	0.329	0.36	1.66		6.55E-05	25,588	1.09	30.65
			44.8	-1055.4								4.24	0.40%	0.343	0.348	2.00		4.54E-05	35,204	1.03	30.37
	С		-6 7.7	-1516.6	-12.20	-1285.7						4.46	0.40%	0.343	0.35	1.76		4.54E-05	38,672	1.04	30.65
,		3.6	-66.6	-1742.3			2.52	30	60	4	56	3.82	0.40%	0.343	0.35	1.68	5 405 03	4.54E-05	40,164	1.05	29.99
1		5.0	71.9	-1516.6			2.52	50	00	-	50	4.74	0.40%	0.343	0.35	1.76	J.40E-03	4.54E-05	38,682	1.04	30.93
	Ð		-40.5	-1055.4	15.07	-1285.7						3.84	0.40%	0.343	0.35	2.00		4.54E-05	35,204	1.03	29.96
			70.5	-1742.3								4.05	0.40%	0.343	0.35	1.68		4.54E-05	40,158	1.05	30.23
			52.5	-988.0								5.32	0.40%	0.335	0.353	1.94		2.43E-05	20,622	1.05	26.59
	С		-65 .7	-1323.0	-7.00	-1155.3						4.97	0.70%	0.335	0.35	1.75		4.26E-05	26,216	1.05	26.23
1		2.6	-64.6	-1535.5			2.52	20	50	4	16	4.21	0.70%	0.335	0.35	1.66	2 12E 02	4.26E-05	27,112	1.06	25.46
3		5.0	54.6	-1323.0			2.32	50	50	-	40	4.13	0.88%	0.335	0.35	1.75	5.152-05	5.36E-05	28,497	1.05	25.33
	Đ		-52.7	-988.0	0.08	-1155.3						5.34	0.40%	0.335	0.35	1.96		2.43E-05	20,445	1.05	26.61
			54.3	-1535.5								3.54	0.88%	0.335	0.35	1.66		5.36E-05	29,432	1.06	24.73
h hi	ML C	20	TUMD	m Thá	n Dâm		âm	Thon	DailD		TUM	NL Cât	Thán	Cât	60	1.1		2.427.05	20.000	1.01	27.00

Phần	Tâ	hợp cơ b	oàn tính to	án	
tử	New	M _{min}	New	Mes	Nmax
1	-1,175.88	-179.92	-1,777.79	-162.65	-2,036.4
1	-1,777.79	-62.20	-1,175.88	77.73	- 2,036 .4
2	-1,055.45	-67.70	-1,516.57	-66.57	-1,742.3
2	-1,516.57	-40.50	-1,055.45	70.51	-1,742.3
3	-987.96	-65.73	-1,322.96	-64.60	-1,535.5
3	-1,322.96	-52.72	-987.96	54.34	-1,535.5
4	-828.01	-48.40	-1,225.61	-48.40	-1,225.6
4	-1,225.61	-43.06	-828.01	48.20	-1,225.6
5	-656.53	-39.90	-922.71	-39.90	-922.7
5	-922.71	-29.00	-656.53	33.63	-922.7
6	-473.04	-38.93	-631.55	-38.93	-631.5
6	-631.55	-1.34	-473.04	34.65	-631.5
7	-258.65	-36.28	-274.64	-35.12	-305.9
7	-305.94	-5.00	-258.65	13.51	-305.9
8	-75.20	-14.26	-83.64	-6.95	-86.]
8	-86.17	8.15	-72.38	19.73	-86.]
9	-2,865.68	-392.95	-2,871.46	-34.01	-3,788.2
9	-3,266.09	-140.08	-2,865.68	82.47	-3,788.2
10	-2,507.47	-268.38	-3,228.83	-128.30	-3,297.0
10	-3,228.83	-81.56	-2,507.47	113.10	-3,297.0
11	-2,237.65	-238.13	-2,913.45	-92.27	-2,973.1
11	-2,913.45	-85.55	-2,237.65	112.04	-2,973.1
12	-1,899.34	-252.45	-2,478.52	-134.96	-2,526.3
12	-2,478.52	-45.74	-1,899.34	139.88	-2,526.3

Bảng tính chiều cao sơ bộ vùng nén, các trường hợp tính toán và chọn cốt thép:

	Cấ	BT	B20	 R_b = 	11.5	E _b =	CII, A-I	I 🔻					280				E _s =	2	10,000	<u>≰</u> _R = 0.623	α _R =	0.429					Bàng	chọn	thép
Phần	Tiết	Chiều	М	N	M_{dh}	N _{dh}	N/R _b b	Trg	n	ε	γa	x	μ _{min}	1	2	3	$A_{\$}\!\!=\!\!A'_{\$}$	μtTT	A _s ^{TT}	Chọn thép	A _s ^{ch}	μ_t^{BT}		Fa ^{TT} (1 bên)	Ø =	14	16	18	20
tử	diện	dài	(k.N.m)	(kN)	(kN.m)	(kN)	(cm)	hợp				(cm)	(%)				(cm²)	(%)	(cm ²)	bố trí mỗi bên	(cm ²)	(%)		(cm ²)	fa=	1.54	2.01	2.54	3.14
			176.5	-1175.9			34.08	1	0.60	0.75	0.94	34.08		2.12	-8.61	2.12	3.39	0.40%											
	С		-179.9	-1777.8	-2.87	-1476.3	51.53	3	0.91	0.66	0.94	44.91	1	3.76	-18.95	9.00	9.00	1.06%											
			-162.6	-2036.4			59.03	3	1.04	0.62	0.94	47.40	0.000/	3.10	-24.62	11.97	11.97	1.41%		1000		1 700/			bêr				
1		4.8	82.4	-1777.8			51.53	3	0.91	0.56	0.94	49.32	0.20%	-0.47	-25.82	1.16	3.39	0.40%	11.97	4022	15.21	1.79%		11.97	110				
	Ð		-62.2	-1175.9	8.91	-1476.3	34.08	1	0.60	0.57	0.94	34.08	1	-5.92	-16.65	-5.92	3.39	0.40%							F				
			77.7	-2036.4			59.03	3	1.04	0.54	0.94	51.19	1	-0.36	-30.67	5.28	5.28	0.62%											
			44.8	-1055.4			30.59	1	0.55	0.54	0.93	30.59		-7.49	-15.68	-7.49	1.68	0.20%							<u> </u>				
	с		-67.7	-1516.6	-12.20	-1285.7	43.96	3	0.78	0.55	0.93	47.63	1	-1.60	-22.24	-4.40	1.68	0.20%											
			-66.6	-1742.3			50.50	3	0.90	0.54	0.93	50.24		-1.06	-26.33	-0.87	1.68	0.20%	1.00			0.759/		1.00	bêr				
2		5.0	71.9	-1516.6			43.96	3	0.78	0.55	0.93	47.23	0.10%	-1.51	-21.94	-4.02	1.68	0.20%	1.08	2020	6.28	0./5%		1.08	10 H				2
	Ð		-40.5	-1055.4	15.07	-1285.7	30.59	1	0.55	0.53	0.93	30.59	1	-7.79	-15.98	-7.79	1.68	0.20%							E				
			70.5	-1742.3			50.50	3	0.90	0.54	0.93	49.92	1	-0.97	-26.05	-0.54	1.68	0.20%											
			52.5	-988.0			28.64	3	0.62	0.58	0.91	28.64		-4.28	-12.95	-4.28	1.38	0.20%											
	с		-65.7	-1323.0	-7.00	-1155.3	38.35	3	0.83	0.57	0.91	38.61	1	-0.52	-17.74	-0.73	1.38	0.20%							-				
			-64.6	-1535.5			44.51	3	0.97	0.55	0.91	40.64		-0.29	-21.60	2.63	2.63	0.38%							bêr				
3		3.0	54.6	-1323.0			38.35	3	0.83	0.55	0.91	39.69	0.10%	-0.93	-18.75	-1.96	1.38	0.20%	2.63	2018	5.09	0./4%		2.63					
	Ð		-52.7	-988.0	0.08	-1155.3	28.64	3	0.62	0.58	0.91	28.64	1	-4.26	-12.93	-4.26	1.38	0.20%							Fe				
			54.3	-1535.5			44.51	3	0.97	0.54	0.91	41.50	1	-0.67	-22.54	1.55	1.55	0.23%										(
b bl	NI C	20		m Thá	n Dâm		300 1	hop D	n co	2/iu	MNG	at an	ón Côt	CD CD		1.20	1.00	0.200/		1									<u> </u>