INTRODUCTION

The name of subject: The reinforced concrete project Code: CSU-CIE-377 Credit: 1 Lecturer: Phạm Phú Anh Huy The built technology division-The faculty of engineering **Textbooks** [1] Bộ môn Công trình bê tông cốt thép-Đại học Xây dựng, Sàn sườn bê tông cốt thép toàn khối, NXB Xây dựng 2012 [2] Phạm Phú Anh Huy, Tập bài giảng Đồ án Kết cấu bê tông cốt thép, Đại học Duy Tân, 2014

INTRODUCITION

- [1] Bộ môn Công trình bê tông cốt thép-Đại học Xây dựng, Sàn sườn bê tông cốt thép toàn khối, NXB Xây dựng 2012
- [2] Phạm Phú Anh Huy, Tập bài giảng Đồ án Kết cấu bê tông cốt thép, Đại học Duy Tân, 2014
- [3] Bộ Xây dựng-Công Ty Tư Vấn Xây Dựng Dân Dụng Việt Nam, Cấu Tạo Bê Tông Cốt Thép, NXB Xây Dựng, Hà Nội 2004
- [4] Nguyễn Đình Cống, Tính toán thực hành cấu kiện bê tông cốt thép theo tiêu chuẩn TCXDVN356-2005, Nhà xuất bản Xây Dựng, Hà Nội 2007

INTRODUCTION

GRADING:

*	Attendance/participation	15%
*	Usual checking	30%
*	Final Exam	55%

THE SYLLABUS

Binding

The engagement

Chapter 1: The mission of project

- 1.1. The beginning data
- 1.2. The material
- 1.3. The slab classification
- 1.4. Choose preliminarily the dimensions of components

THE SYLLABUS

- Chapter 2: Design the slab
- 2.1. The calculation method
- 2.2. The calculation modeling
- 2.3. Choose preliminarily the dimensions of slab
- 2.4. The calculation span (clear span)
- 2.5. The loads
- 2.6. The internal force
- 2.7. Calculate the reinforcement area
- 2.8. Choose the temperature and shrinkage steel
- 2.9. Draw the drawing
- 2.10. Summarize the material

THE SYLLABUS

Chapter 3:Design the beam(or the beam along I_2 direction)

- 3.1. The calculation method
- 3.2. The calculation modeling
- 3.3. Choose preliminarily the dimensions of section
- 3.4. Calculate the calculation span (clear span)
- 3.5. Calculate the loads
- 3.6. Calculate the internal force(the envelope internal force diagram)
- 3.7. Calculate the reinforcement area
- 3.8. Choose the temperature and shrinkage steel
- 3.9. Calculate and draw the envelope material diagram
- 3.10. Draw the drawing
- 3.11. Summarize the material

THE SYLLABUS

Chapter 4:Design the girder(or the beam along I₁ direction)

- 4.1. The calculation method
- 4.2. The calculation modeling
- 4.3. Choose preliminarily the dimensions of section
- 4.4. Calculate the calculation span
- 4.5. Calculate the loads
- 4.6. Calculate the internal force(the envelope internal force diagram)
- 4.7. Calculate the reinforcement area
- 4.8. Choose the temperature and shrinkage steel
- 4.9. Calculate and draw the envelope material diagram
- 4.10. Draw the drawing
- 4.11. Summarize the material

THE SYLLABUS

Chapter 5: The drawing 5.1. Summarize the data 5.2. Draw the drawing Conferences

CHAPTER 1: THE DATA OF PROJECT

1.1. THE DATA

-The students will have a data table with the information such as:

- \checkmark L₁: short side dimension of slab
- \checkmark L₂: long side dimension of slab
- ✓The structure plan view
- $\checkmark P_{tc}(kN/m^2)$: the standard live load

CHAPTER 1: THE DATA OF PROJECT

1.2. THE MATERIAL

- Grade of concrete
- -Grade of steel.
- –Look up the data: R_b, R_{bt}, E_b

 $\begin{array}{l} \mathsf{R}_{\mathsf{s}},\,\mathsf{R}_{\mathsf{sc}},\,\mathsf{R}_{\mathsf{sw}},\,\mathsf{E}_{\mathsf{s}}\\ \boldsymbol{\xi}_{\mathsf{R}},\,\boldsymbol{\alpha}_{\mathsf{R}},\,\boldsymbol{\xi}_{\mathsf{pl}},\,\boldsymbol{\alpha}_{\mathsf{pl}} \end{array}$

CHAPTER 1: THE DATA OF PROJECT

1.3. CLASSIFICATION

The slabs have four side with connection

✓ $L_2/L_1 \ge 2$ → neglect the slab working according to the long side, and we see the slab work according to short side → The one-way slab

✓ L_2/L_1 <2 → not neglect the slab working according to the long side, and we see the slab work according to two side → The two-way slab

CHAPTER 1: THE DATA OF PROJECT 1.4. CHOOSE PRELIMINARILY THE DIMENSION OF COMPONENTS

♦ Slab:

 $h_b = \frac{D}{m} l$

✤Beam:

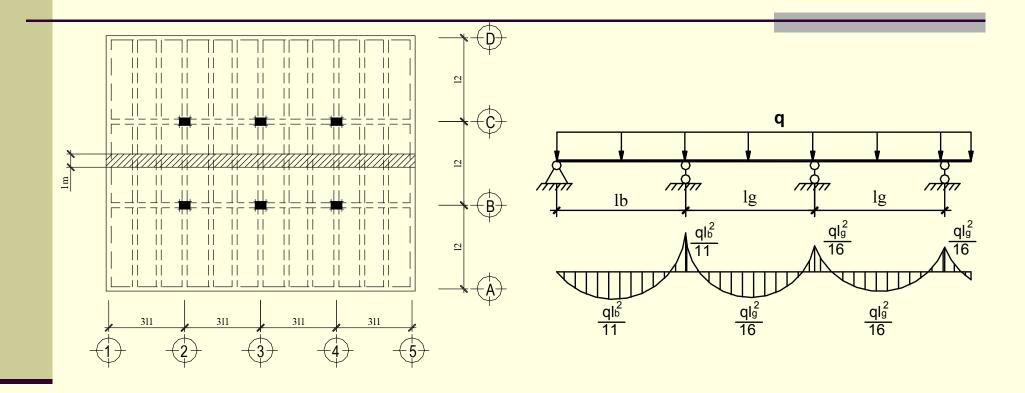
$$h_{dp} = (\frac{1}{12} \div \frac{1}{16}).l$$

$$h_{dc} = (\frac{1}{8} \div \frac{1}{12}) J_{dc}$$

♦Girder:

From h_{dp} and h_{dc} we choose b_{dp} and b_{dc}

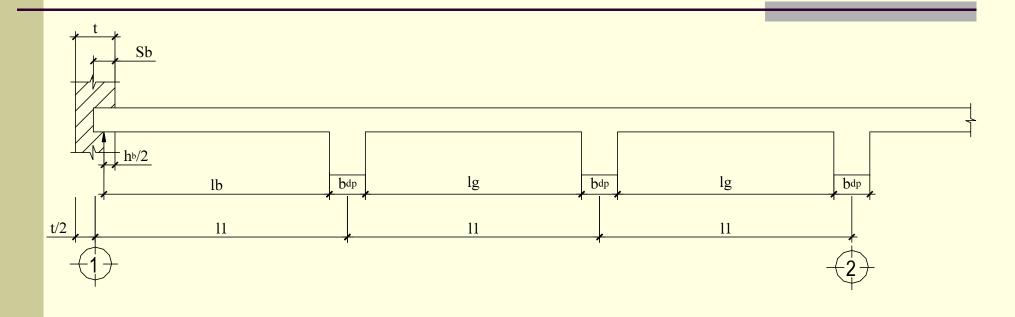
 $Column: choose b_c = b_{dc}$


✤Wall: choose the wall thickness b_t=340mm

2.1. THE CALCULATION METHOD

-Can use among of two method to calculate the internal force
 ✓The elastic method

- ✓The plastic method
- The slab is required to calculate the plastic method


2.2. THE CALCULATION MODEL

CHAPTER 2: THE SLAB DESIGN 2.3. CHOOSE PRELIMINARILY THE THICKNESS OF SLAB

h_b is chosen in chapter 1

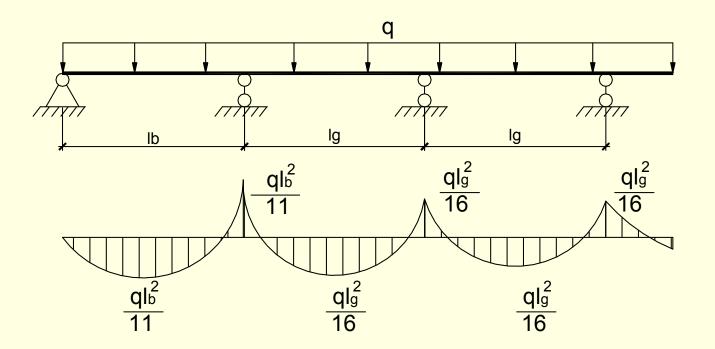
CHAPTER 2: THE SLAB DESIGN 2.4. THE CALCULATION SPAN

*
$$I_b = I_1 - t/2 - b_{dp}/2 + h_b/2$$
.
* $I_g = I_1 - b_{dp}$

2.5. THE LOADS

Dead load: depends on the detail of slab

Details	The standard value (kN/m ³)	Safety parameter	The calculation value (kN/m ²)
Floor brick layer, thickness 10mm; $\gamma = 20 \text{ kN/m}^3$	0,01 x 20 = 0,2	1,1	0,22
Cement mortar layer, thickness 30mm; $\gamma = 18 \text{ kN/m}^3$	0,03 x 18 = 0,54	1,3	0,702
Slab, thichness 80mm $\gamma = 25 \text{ kN/m}^3$	0,08 x 25 = 2	1,1	2,2
Cement mortar layer, thickness 10mm; $\gamma = 18 \text{ kN/m}^3$	0,01 x 18 = 0,18	1,3	0,234
Total	2,92		3,356


Live load: according to Vietnam code(TCVN2737-1995)

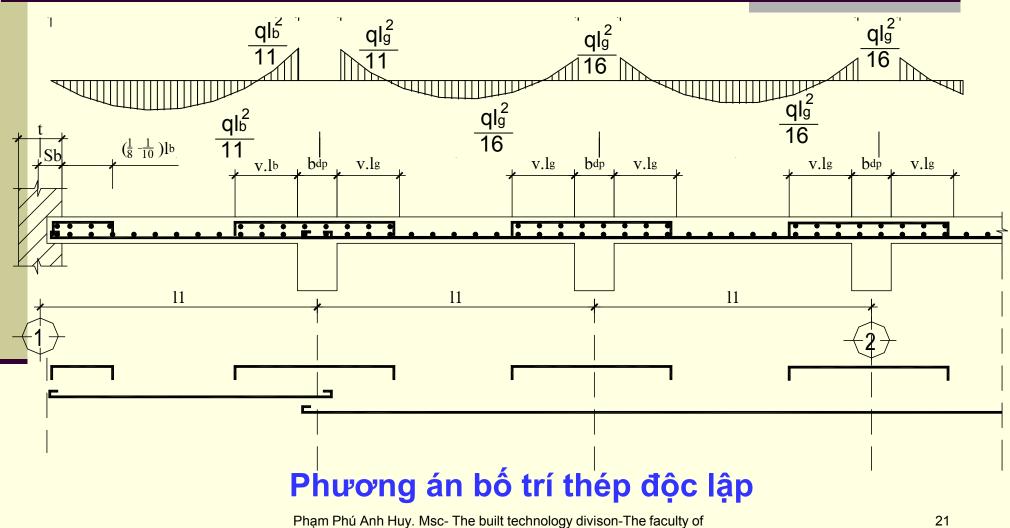
Phạm Phú Anh Huy. Msc- The built technology divison-The faculty of

civil engineering -DTU

CHAPTER 2: THE SLAB DESIGN 2.6. THE INTERNAL FORCE

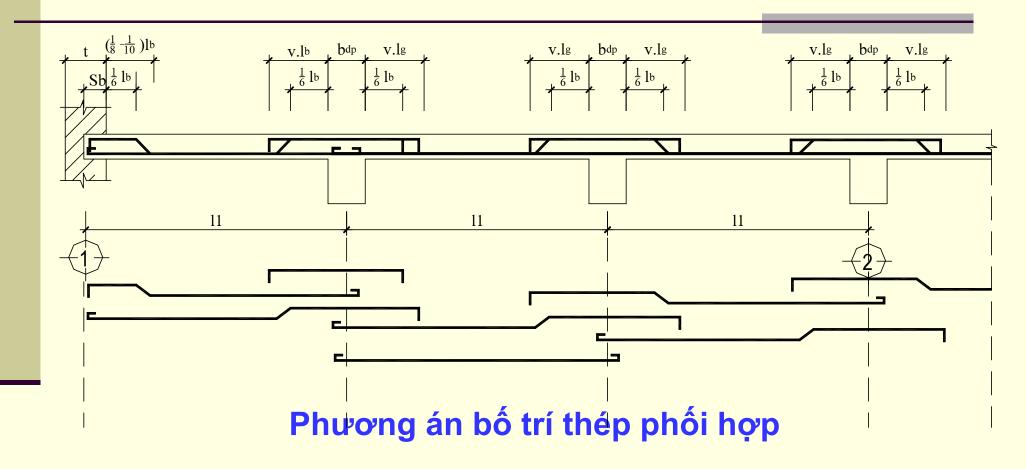
Calculate the internal force according to the plastic model

CHAPTER 2: THE SLAB DESIGN 2.7. CALCULATE THE REINRFORCEMENT AREA

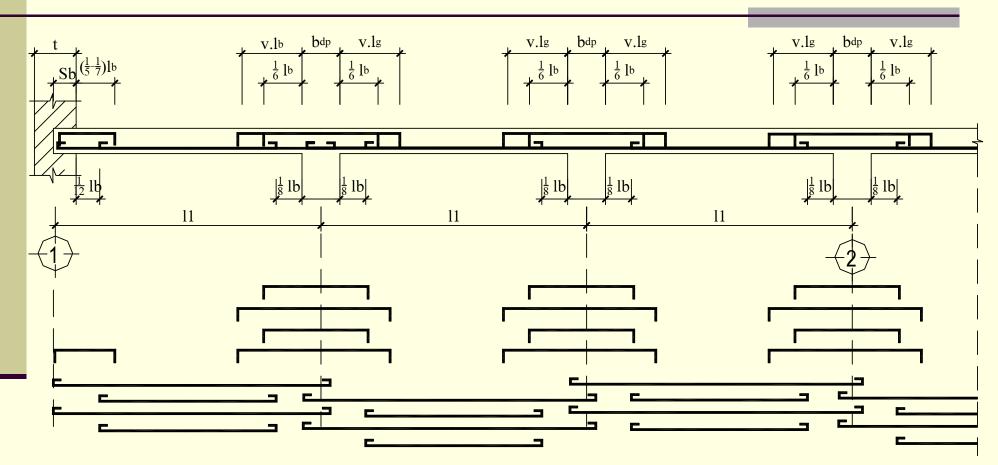

-To calculate the reinforcement area of slab, we can use only the tension einforcement procedure of the rectangular section.

-The calculation section is the rectangular with the dimensions $(1mxh_b)$

2.8. CHOOSE THE TEMPERATURE AND SHINKAGE STEEL

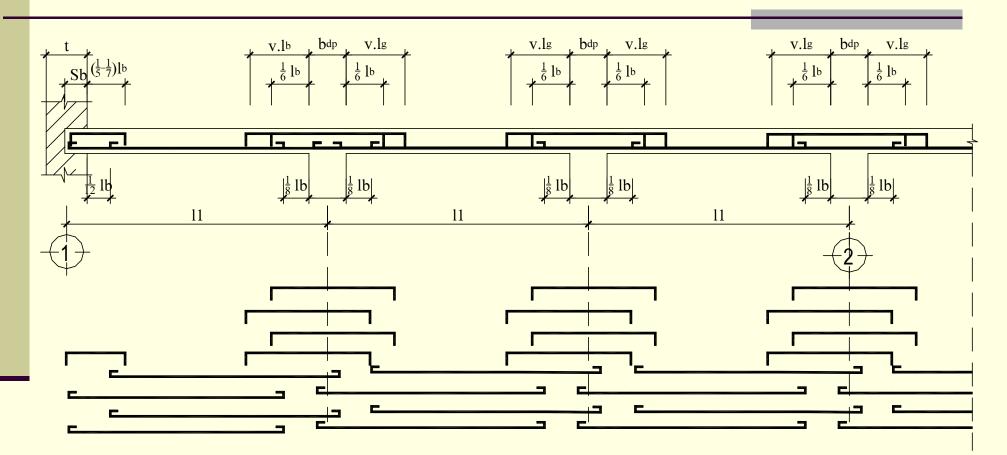

♦ The temperature and shinkage steel area: $A_{s,t} \ge (15-20)\% A_s$ ♦ The top of shinkage steel: $A_{s,ts} \ge 50\% A_s$ and the spacing ≤ 200 mm

2.9. THE DRAWING

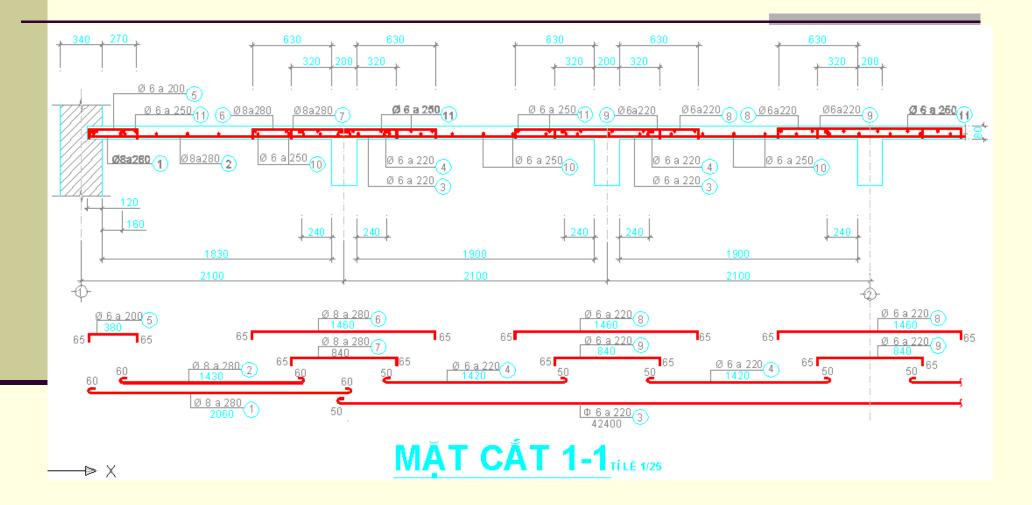


civil engineering -DTU

2.9. THE DRAWING



2.9. THE DRAWING


Phương án bố trí thép: thanh dài, ngắn xen kẽ

2.9. THE DRAWING

Phương án bố trí thép: thanh ngắn đặt so le

2.9. THE DRAWING

CHAPTER 2: THE SLAB DESIGN 2.10. SUMARIZE THE MATERIAL

Tên cấu	Số hiệu			Đường	Số	Chiề	u dài	Trong lượng
kiện	thanh		Hình dáng	kính (mm)	lượng thanh	1 thanh (mm)	Tổng cộng (m)	(kg)
	1	60 	<u>2060</u> 60	8	193	2175	419,78	165,810
	2	60 	1430 960	8	193	1550	299,15	118,164
	з	50 	42400 50	6	112	42500	4760	1056,72
	4	50 e	1420 50	6	1070	1520	1626,4	361,061
(SL:1)	5	65	380 65	6	522	510	266,22	59,100
	6	65	1460 65	8	193	1590	306,87	121,214
SÀN	7	65	840 65	8	193	970	187,21	73,948
S S	8	65	1460 65	6	963	1590	1531,17	339,920
BÅN	9	65	840	6	963	970	934,11	207,372
m	10	50 C	<u>26820</u> 50	6	101	26920	2178,92	603,600
	11	50 e	26820 50	6	68	26920	1830,56	406,384
	12	65	1200 65	6	504	1330	670,32	148,811
	13	50 C	<u>25020</u> 50	6	24	25120	602,88	133,839

BẢNG THỐNG KÊ CỐT THÉP

BẢNG TỔNG HỢP VẬT LIỆU

NHÓM CÓT THÉP CI CII										
ĐƯỜN G KÍNH (mm)	6	8	12	14	16	18	20	22	25	28
TRỌNG LƯỢNG (Kg)	3055,2	1027	0	0	0	0	0	0	0	0

DESIGN THE SLAB ACCORDING TO THE PLASTIC MODEL – TWO-WAY SLAB

The method and design is the same of the one-way slab. In here, there is different at the calculation internal force step. The two-way slab work two directions, when the slab has 4 sides with fix connection, we have 4 the moment vales

ļ	Bảng 5.1: Tỷ số mômen trong bản kê bốn cạnh khi tính theo sơ đồ khớp dẻo								
	$ r=rac{l_2}{l_1}$	$rac{{M_2}}{{M_1}}$	$rac{M_{I}}{M_{1}}, rac{M_{I}^{'}}{M_{1}}$	$rac{M_{_{I\!I}}}{M_{_1}}, rac{M_{_{I\!I}}}{M_{_1}}$					
	1÷1,5	1÷0,3	2,5÷1,5	2,5÷0,8					
	1,5÷2	0,5÷0,15	2÷1	1,3÷0,3					

CHAPTER 3: THE BEAM DESIGN 3.1.THE DESIGN METHOD

-Can use among of two method to calculate the internal force
 ✓The elastic method

- ✓The plastic method
- The beam is required to design the plastic method

CHAPTER 3: THE BEAM DESIGN 3.2. THE CALCULATION MODEL

The calculation model of beam is the continuos beam with 3 or 4 or 5 spans

CHAPTER 3: THE BEAM DESIGN

3.3. CHOOSE PRELIMINARILY THE DIMENSIONS OF BEAM SECTION

We chosen it in chapter 1

CHAPTER 3: THE BEAM DESIGN 3.4. THE CALCULATION SPAN

The egde span: is chosen the spacing from the reaction of wall to the edge of girder

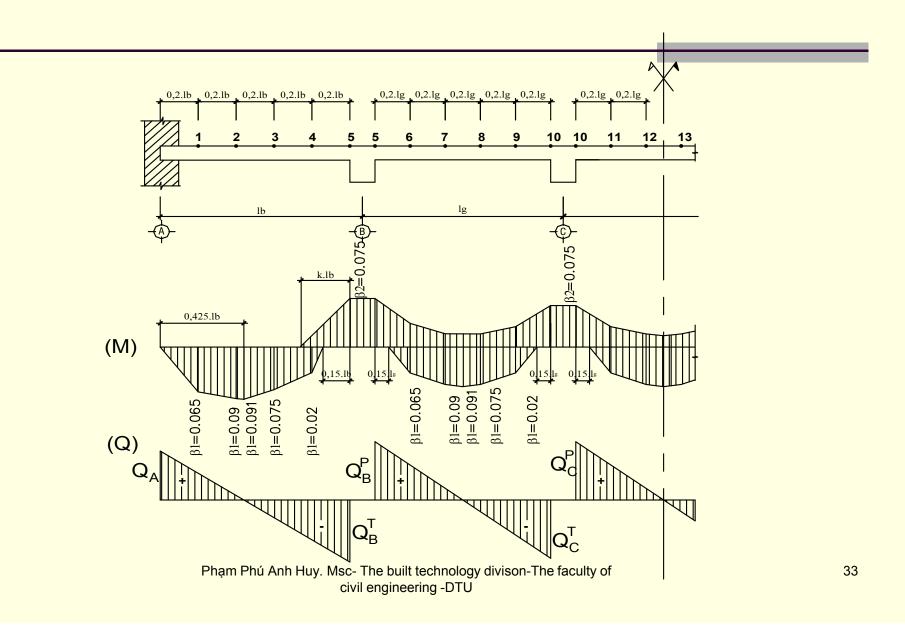
The internal spans: is chosen the spacing between the inside edge of girder

$$l_b = l_2 - \frac{b_{dc}}{2} - \frac{b_t}{2} + \frac{S_d}{2}$$

 $l_g = l_2 - d_{dc}$

CHAPTER 3: THE BEAM DESIGN

3.5. THE LOAD


Dead loads:

✓ The dead load of slab (g_b) transfer to it.

- ✓The self-weight of beam.
- ✓The self-weight of the beam-details.
- ✓The self-weight of wall

Live load: due to the live load of slab (p_b) transfer to itdo

CHAPTER 3: THE BEAM DESIGN 3.6. THE INTERNAL FORCE AND ENVELOPE DIAGRAM

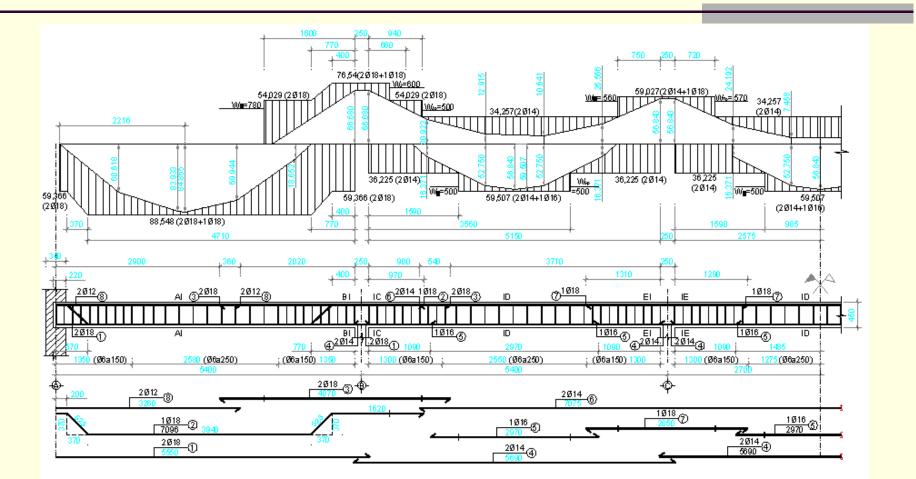
CHAPTER 3: THE BEAM DESIGN 3.7. CALCULATE THE REINFORCEMENT AREA

The longitudinal-reinforcement area is calculated by the rectangular or T-tension reinforcement procedure The stirrup and diagonal steel (can have not)

CHAPTER 3: THE BEAM DESIGN

3.8. CHOSSE THE TEMPERATURE AND SHINKAGE REINFORCEMENT

- The temperature and shinkage steel area is chosen >= 0,15
 the beam-web area.
- Can use the temperature and shinkage steel to connect with the stirrup.
- When the beam-height is more than 700mm, we can use it and put it in the mid-height of beam


CHAPTER 3: THE BEAM DESIGN

3.9. CALCULATE VAD DRAW THE MATERIAL-DIAGRAM

- 1. Anticipate the bar is bent and cut
- 2. Calculate M_{td} (the ultimate-strength of the section): should present the table.
- 3. Choose the bend point and check bar-bend.
- 4. Calculate to cut the bar.
- 5. Draw the material diagram.

CHAPTER 3: THE BEAM DESIGN

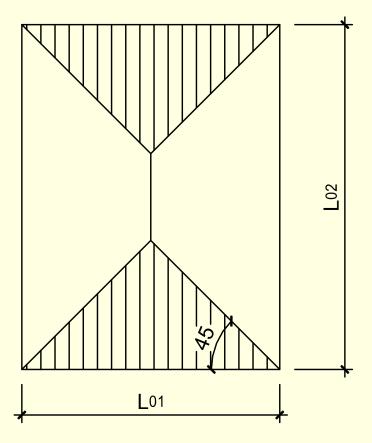
3.10. THE DRAWING

ΒΙΕ̈́U ĐỔ ΒΑΟ VẬT LIỆU DẦM PHỤ ΤΙ 4440

CHAPTER 3: THE BEAM DESIGN 3.11. SUMURIZE THE MATERIAL

Tên cấu kiện	Số hiệu thanh	Hình dáng	Đường kính (mm)	Số lượng thanh	Chiều dài 1 thanh Tổng cộng (mm) (m)		Trọng lượng (kg)	
	1	5550	18	44	5550	244,2	488,912	
PHU _(st:11)	2	200 3940 5 1620	18	22	7096	156,11	311,908	
	3	4070	18	44	4070	179,08	357,802	
	4	5690	14	66	5690	375,54	453,652	
	5	2970	16	33	2970	98,07	154,758	
	6	7075	14	44	7075	311,30	376,050	
DÂM	7	2850	18	22	2850	62,70	125,275	
	8	3260	12	44	3260	143,44	127,375	
	9	90 00 00 00 00 00 00 00 00 00	6	140	1180	165,20	36,674	

BẢNG THỐNG KÊ CỐT THÉP

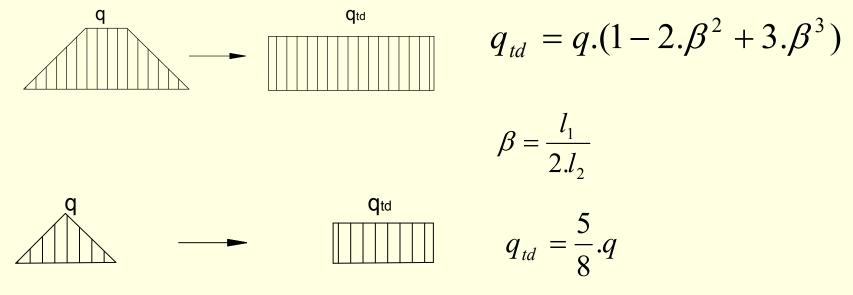

BẢNG TỔNG HỢP VẬT LIỆU

NHÓM CÓT THÉP	CI		CII							
ĐƯỜNG KÍNH (mm)	6	8	12	14	16	18	20	22	25	28
TRỌNG LƯỢNG (Kg)	3055,2	1027	127,4	1025,4	154,8	1405,1	116,8	312,7	1559,3	404,5

CHAPTER 3: THE BEAM DESIGN DESIGN THE BEAM ACCORDING TO THE PLASTIC METHOD

The two-way slab

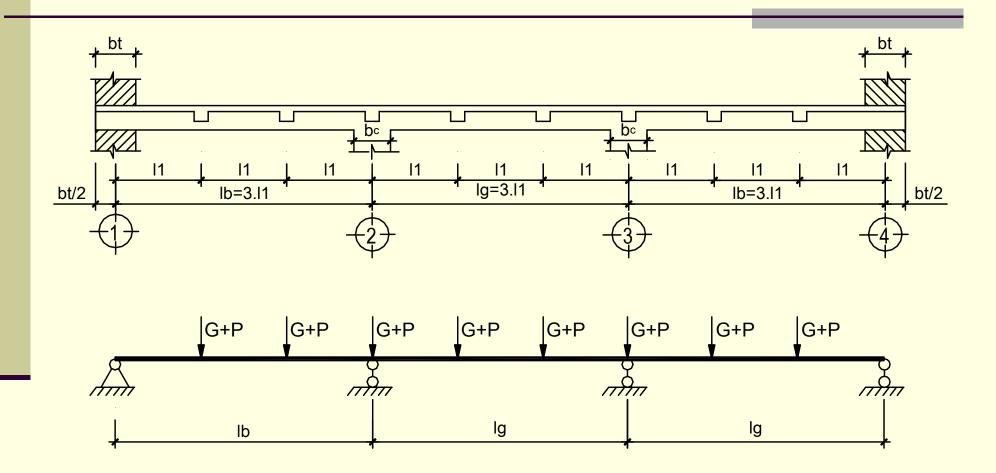
- The loads transfer to the rule:



CHAPTER 3: THE BEAM DESIGN THE BEAM ACCORDING TO THE PLASTIC

DESIGN THE BEAM ACCORDING TO THE PLASTIC METHOD

-Look up the calculation table to determine the moment and shear.


-Can change the triangular or trapezium loads to distributed loads:

CHAPTER 4: THE GIRDER DESIGN 4.1. THE CALCULATION METHOD

- The girder is calculated by the elastic method

CHAPTER 4: THE GIRDER DESIGN 4.2. THE CALCULATION MODEL

CHAPTER 4: THE GIRDER DESIGN 4.3. CHOOSE PRELIMINARILY THE DIMENDIONS OF GIRDER SECTION (b_{dc}xh_{dc})

-It is chosen in chapter 1

CHAPTER 4: THE GIRDER DESIGN 4.4. THE CALCULATION SPANS

-The calculation span are chosen the spacing from center to center of support

The edge span: $I_b = 3I_1$

The internal span: $I_g = 3I_1$

CHAPTER 4: THE GIRDER DESIGN

4.5. THE LOADS

Dead loads:

✓ The self-weight of beam: concentrated force (be at the beam-positions)
✓ The dead load due to the beam transfer to it (is calculated the concentrated force)


Live load:

✓The live load due to the beam transfer to it (is calculated the concentrated force)

CHAPTER 4: THE GIRDER DESIGN 4.6. THE ENVELOPE INTERNAL FORCE DIAGRAMS

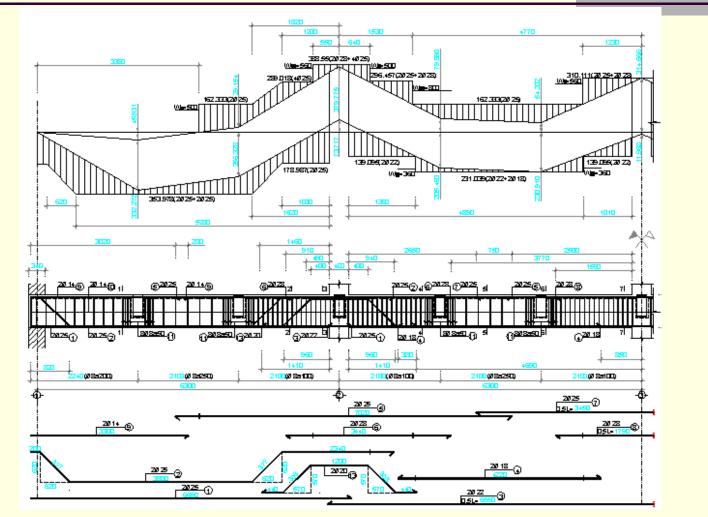
- -There are 2 method:
 - ≻The load-combination
 - ≻The internal-force combination.
- -The students can use the SAP2000 software to solve this problem

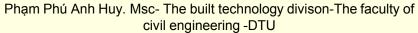
CHAPTER 4: THE GIRDER DESIGN 4.6. THE ENVELOPE INTERNAL FORCE DIAGRAMS

47

CHAPTER 4: THE GIRDER DESIGN 4.7. CALCULATE THE REINFORCEMENT AREA

- -The longitudinal reinforcement
- -The stirrup
- -The diagonal steel


CHAPTER 4: THE GIRDER DESIGN 4.8. CHOOSE THE TEMPRATURE AND SHINKAGE STEEL


-The same the beam

CHAPTER 4: THE GIRDER DESIGN 3.9. CALCULATE VAD DRAW THE MATERIAL-DIAGRAM

- The same the beam

CHAPTER 4: THE GIRDER DESIGN 4.10. THE DRAWING

CHAPTER 4: THE GIRDER DESIGN 4.11. SUMARIZE THE MATERIALS

Tên cấu	Số hiệu thanh		Đường	Số	Chiề	Trọng lượng	
kiện		Hình dáng	kính (mm)	lượng thanh	1 thanh (mm)	Tổng cộng (m)	(kg)
	1	6690	25	16	6900	107,04	412,425
	2	200 2340	25	16	7884	126,14	486,D17
- 	3	13100	22	8	13100	104,80	312,723
<u></u> _	4	4220	18	16	4220	67,52	134,905
DÂM CHÍNH (SL4)	5	7020	25	16	7020	112,32	432,769
	6	3440	28	16	3440	55.D4	266 <i>Д</i> 63
	7	6900	25	8	6900	55,20	212,686
	8	3580	28	8	3580	28,64	138,446
	9	3420	14	16	3420	54,72	66,102
	10	11700 1710	14	8	13410	107,28	129,594
	11		8	720	1780	1281,60	506,232
	12	<u>210</u> ស៊ី ស៊ី	8	336	310	104,16	41,143
	13	4 <u>40 x 1200</u> 7 440	20	16	2960	47,36	116,79

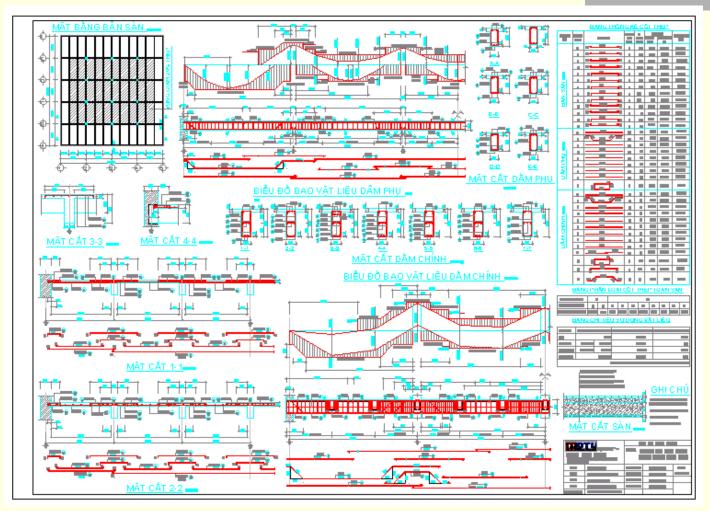
BẢNG THỐNG KÊ CỐT THÉP

BẢNG TỔNG HỢP VẬT LIỆU

NHÓM CÔT THÉP	СІ		CII							
ĐƯỜNG KÍNH (mm.)	6	8	12	14	16	18	20	22	25	28
TRỌNG LƯỢNG (Kg)	3055,2	1027	127,4	1025,4	154,8	1405,1	116,8	312,7	1559,3	404,5

CHAPTER 5: THE DRAWING 5.1. SUMARIZE THE DESIGN-DATA

-We sumarize all the design data: slab, beam, girder design data.


-From it, we can draw all the data in the drawing

CHAPTER 5: THE DRAWING

5.2. DRAW THE DRAWING

- -Layer, drawing-line, font, size...
- -Scale
- -The contents is preseted in the drawing

CHAPTER 5: THE DRAWING 5.2. DRAW THE DRAWING

